Skip to main content

Abstract

The Possible biological applications of dendrimers stem from their capacity to influence the cell–cell interactions. These interactions are mediated by branched glycoconjugates forming a structure called glycocalyx present on the cell surface. Glycopeptide dendrimers, which can mimic these structures, thus can be used for detection of important players involved in carbohydrate-mediated cell–cell interactions or signaling. Moreover, they can be used as artificial modulators of glycoconjugate-mediated signaling and thus influence important processes, such as immune response, inflammation or fertilization. These types of glycodendrimers are also under investigation as antitumor or antimicrobial therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andre, S., Renaudet, O., Bossu, I., Dumy, P., Gabius, H.J.: Cyclic neoglycodecapeptides: how to increase their inhibitory activity and selectivity on lectin/toxin binding to a glycoprotein and cells. J. Pept. Sci. 17(6), 427–437 (2011)

    Article  PubMed  CAS  Google Scholar 

  2. Bergeron-Brlek, M., Shiao, T.C., Trono, M.C., Roy, R.: Synthesis of a small library of bivalent α-D-mannopyranosides for lectin cross-linking. Carbohydr. Res. 346(12), 1479–1489 (2011)

    Article  PubMed  CAS  Google Scholar 

  3. Bogdan, N., Roy, R., Morin, M.: Glycodendrimer coated gold nanoparticles for proteins detection based on surface energy transfer process. RSC Adv. 2, 985–991 (2012)

    Article  CAS  Google Scholar 

  4. Cecioni, S., Lalor, R., Blanchard, B., Praly, J.P., Imberty, A., Matthews, S.E., Vidal, S.: Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. Chem. Eur. J. 15(47), 13232–13240 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Cecioni, S., Oerthel, V., Iehl, J., Holler, M., Goyard, D., Praly, J.P., Imberty, A., Nierengarten, J.F., Vidal, S.: Synthesis of dodecavalent fullerene-based glycoclusters and evaluation of their binding properties towards a bacterial lectin. Chem. Eur. J. 17(11), 3252–3261 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. Chabre, Y., Roy, R.: Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. Chabre, Y.M., Giguere, D., Blanchard, B., Rodrigue, J., Rocheleau, S., Neault, M., Rauthu, S., Papadopoulos, A., Arnold, A.A., Imberty, A., Roy, R.: Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors. Chem. Eur. J. 17(23), 6545–6562 (2011)

    Article  PubMed  CAS  Google Scholar 

  8. Chabre, Y.M., Roy, R.: Dendrimer-Based Drug Delivery Systems: From Theory to Practice. Dendrimer-coated carbohydrate residues as drug delivery trojan horses in glycoscience, 1st edn., pp. 405–436. Wiley, Hoboken (2012)

    Google Scholar 

  9. Chen, Y., Vedala, H., Kotchey, G.P., Audfray, A., Cecioni, S., Imberty, A., Vidal, S., Star, A.: Electronic detection of lectins using carbohydrate-functionalized nanostructures: Graphene versus carbon nanotubes. ACS Nano 6(1), 760–770 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. Euzen, R., Reymond, J.L.: Glycopeptide dendrimers: tuning carbohydrate-lectin interactions with amino acids. Mol. BioSyst. 7(2), 411–421 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. Gour, N., Verma, S.: Synthesis and AFM studies of lectin-carbohydrate self-assemblies. Tetrahedron 64(30–31), 7331–7337 (2008)

    Article  CAS  Google Scholar 

  12. Gu, L., Luo, P.G., Wang, H., Meziani, M.J., Lin, Y., Veca, L.M., Cao, L., Lu, F., Wang, X., Quinn, R.A., Wang, W., Zhang, P., Lacher, S., Sun, Y.P.: Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromol 9(9), 2408–2418 (2008)

    Article  CAS  Google Scholar 

  13. Hartmann, M., Lindhorst, T.K.: The bacterial lectin FimH, a target for drug discovery – carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion. Eur. J. Org. Chem. 2011(20–21), 3583–3609 (2011)

    Article  CAS  Google Scholar 

  14. Hatano, K., Saeki, H., Yokota, H., Aizawa, H., Koyama, T., Matsuoka, K., Terunuma, D.: Fluorescence quenching detection of peanut agglutinin based on photoluminescent silole-core carbosilane dendrimer peripherally functionalized with lactose. Tetrahedron Lett. 50(42), 5816–5819 (2009)

    Article  CAS  Google Scholar 

  15. Heidecke, C., Lindhorst, T.: Iterative synthesis of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties. Chem. Eur. J. 13(32), 9056–9067 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. Helms, B.A., Reulen, S.W.A., Nijhuis, S., de Graaf-Heuvelmans, P.T.H.M., Merkx, M., Meijer, E.W.: High-affinity peptide-based collagen targeting using synthetic phage mimics: From phage display to dendrimer display. J. Am. Chem. Soc. 131(33), 11683–11685 (2009)

    Article  PubMed  CAS  Google Scholar 

  17. Jensen, A., Maru, B., Zhang, X., Mohanty, D., Fahlman, B., Swanson, D., Tomalia, D.: Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Lett. 5(6), 1171–1173 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Kikkeri, R., Gruenstein, D., Seeberger, P.H.: Lectin biosensing using digital analysis of Ru(II)-glycodendrimers. J. Am. Chem. Soc. 132(30), 10230–10232 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. Kim, M.H., Kino-oka, M., Taya, M.: Designing culture surfaces based on cell anchoring mechanisms to regulate cell morphologies and functions. Biotechnol. Adv. 28(1), 7–16 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. Kleinert, M., Rockendorf, N., Lindhorst, T.: Glyco-SAMs as glycocalyx mimetics: Synthesis of L-fucose- and D-mannose-terminated building blocks. Eur. J. Org. Chem. (18), 3931–3940 (2004)

    Article  Google Scholar 

  21. Kleinert, M., Winkler, T., Terfort, A., Lindhorst, T.: A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Org. Biomol. Chem. 6(12), 2118–2132 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Lahmann, M.: Glycoscience and microbial adhesion. In: Architectures of Multivalent Glycomimetics for Probing Carbohydrate–Lectin Interactions, pp. 17–65. Springer, Berlin (2009)

    Google Scholar 

  23. Lallana, E., Fernandez-Trillo, F., Sousa-Herves, A., Riguera, R., Fernandez-Megia, E.: Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharmaceut. Res. 29, 902–921 (2012)

    Article  CAS  Google Scholar 

  24. Ma, H.L., Liang, X.J.: Fullerenes as unique nanopharmaceuticals for disease treatment. Sci. China Chem. 53, 2233–2240 (2010)

    Article  CAS  Google Scholar 

  25. Munoz, E.M., Correa, J., Fernandez-Megia, E., Riguera, R.: Probing the relevance of lectin clustering for the reliable evaluation of multivalent carbohydrate recognition. J. Am. Chem. Soc. 131(49), 17765–17767 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. Nierengarten, J.F., Iehl, J., Oerthel, V., Holler, M., Illescas, B.M., Munoz, A., Martin, N., Rojo, J., Sanchez-Navarro, M., Cecioni, S., Vidal, S., Buffet, K., Durka, M., Vincent, S.P.: Fullerene sugar balls. Chem. Commun. 46, 3860–3862 (2010)

    Article  CAS  Google Scholar 

  27. Oliveira, J.M., Salgado, A.J., Sousa, N., Mano, J.F., Reis, R.L.: Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies – A review. Prog. Polym. Sci. 35(9), 1163–1194 (2010)

    Article  CAS  Google Scholar 

  28. Patel, A., Lindhorst, T.: Multivalent glycomimetics: synthesis of nonavalent mannoside clusters with variation of spacer properties. Carbohydr. Res. 341(10), 1657–1668 (2006)

    Article  PubMed  CAS  Google Scholar 

  29. Pera, N.P., Branderhorst, H.M., Kooij, R., Maierhofer, C., van der Kaaden, M., Liskamp, R.M.J., Wittmann, V., Ruijtenbeek, R., Pieters, R.J.: Rapid screening of lectins for multivalency effects with a glycodendrimer microarray. ChemBioChem 11(13), 1896–1904 (2010)

    Article  Google Scholar 

  30. Sanchez-Navarro, M., Munoz, A., Illescas, B.M., Rojo, J., Martin, N.: [60]Fullerene as multivalent scaffold: Efficient molecular recognition of globular glycofullerenes by concanavalin A. Chem. Eur. J. 17(3), 766–769 (2011)

    Google Scholar 

  31. Schlick, K.H., Cloninger, M.J.: Inhibition binding studies of glycodendrimer/lectin interactions using surface plasmon resonance. Tetrahedron 66(29), 5305–5310 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. Schlick, K.H., Lange, C.K., Gillispie, G.D., Cloninger, M.J.: Characterization of protein aggregation via intrinsic fluorescence lifetime. J. Am. Chem. Soc. 131(46), 16608–16609 (2009)

    Article  PubMed  CAS  Google Scholar 

  33. Schmid, S., Mishra, A., Baeuerle, P.: Carbohydrate-functionalized oligothiophenes for concanavalin A recognition. Chem. Commun. 47(4), 1324–1326 (2011)

    Article  CAS  Google Scholar 

  34. Seah, N., Santacroce, P., Basu, A.: Probing the lactose⋅GM3 carbohydrate - carbohydrate interaction with glycodendrimers. Org. Lett. 11(3), 559–562 (2009)

    Article  PubMed  CAS  Google Scholar 

  35. Shaikh, H., Sonnichsen, F., Lindhorst, T.: Synthesis of glycocluster peptides. Carbohydr. Res. 343(10–11), 1665–1674 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. Sleiman, M., Varrot, A., Raimundo, J.M., Gingras, M., Goekjian, P.G.: Glycosylated asterisks are among the most potent low valency inducers of concanavalin A aggregation. Chem. Commun. (48), 6507–6509 (2008)

    Article  Google Scholar 

  37. Soomro, Z.H., Cecioni, S., Blanchard, H., Praly, J.P., Imberty, A., Vidal, S., Matthews, S.E.: CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Org. Biomol. Chem. 9, 6587–6597 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Šebestík, J., Reiniš, M., Ježek, J. (2012). Diagnostics, Lectin Detection and Cell–Cell Interactions. In: Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1206-9_19

Download citation

Publish with us

Policies and ethics