Skip to main content

Cell Therapy and Structural Plasticity Following Cerebral Ischemia

  • Chapter
  • First Online:
Cell-Based Therapies in Stroke

Abstract

Conventional therapeutic strategies in stroke, both ischemic and hemorrhagic, have focused on the prevention of further stroke. Stem cell transplantation shifts the paradigm of stroke therapy in that it aims to repair the ischemic brain by facilitating the brain’s plasticity to regenerate synaptic structures and reorganize its functional architecture after injury. Transplanted neural progenitor cells have been shown to migrate to the ischemic penumbra and improve functional recovery. The mechanisms through which transplanted cells exert their effects include promoting dendritic branching, facilitating axonal rewiring and axonal transport, enhancing neovascularization, and modulating the inflammatory response. This chapter discusses the molecular mechanisms that underlie axonal and dendritic regeneration; focuses on the effect of stem cells on brain remodeling following stroke, as plasticity is thought to play a major role in recovery; and examines the logistical considerations of stem cell transplantation in a translational context. Stem cell transplantation for stroke is a nascent field of research, and much work is needed to optimize its therapeutic benefit and to minimize its risks.

Stanley Hoang and Henry Jung contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N (2012) Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab 32:1317–1331

    Article  PubMed  CAS  Google Scholar 

  • Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548

    Article  PubMed  CAS  Google Scholar 

  • Andres RH, Choi R, Steinberg GK, Guzman R (2008a) Potential of adult neural stem cells in stroke therapy. Regen Med 3:893–905

    Article  PubMed  Google Scholar 

  • Andres RH, Guzman R, Ducray AD, Mordasini P, Gera A, Barth A et al (2008b) Cell replacement therapy for intracerebral hemorrhage. Neurosurg Focus 24:E16

    Article  PubMed  Google Scholar 

  • Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G et al (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777–1789

    Article  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Au E, Richter MW, Vincent AJ, Tetzlaff W, Aebersold R, Sage EH et al (2007) SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci 27:7208–7221

    Article  PubMed  CAS  Google Scholar 

  • Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266

    Article  PubMed  Google Scholar 

  • Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21:5272–5280

    PubMed  CAS  Google Scholar 

  • Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38:817–826

    Article  PubMed  Google Scholar 

  • Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283

    Article  PubMed  Google Scholar 

  • Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    Article  PubMed  CAS  Google Scholar 

  • Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH (2009) In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 29:1719–1734

    Article  PubMed  CAS  Google Scholar 

  • Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M et al (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248

    Article  PubMed  Google Scholar 

  • Carmichael ST (2008) Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke 39:1380–1388

    Article  PubMed  Google Scholar 

  • Carmichael ST, Wei L, Rovainen CM, Woolsey TA (2001) New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 8:910–922

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S (2005) Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 193:291–311

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M (2001a) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE et al (2001b) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Goldberg DE, Kolb B, Lanser M, Benowitz LI (2002) Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci USA 99:9031–9036

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    Article  PubMed  CAS  Google Scholar 

  • Conner JM, Chiba AA, Tuszynski MH (2005) The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46:173–179

    Article  PubMed  CAS  Google Scholar 

  • Cramer SC (2008) Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 63:272–287

    Article  PubMed  Google Scholar 

  • Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 102:14069–14074

    Article  PubMed  CAS  Google Scholar 

  • Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644

    Article  PubMed  Google Scholar 

  • Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC et al (2009) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 17:1282–1291

    Article  PubMed  CAS  Google Scholar 

  • Daadi MM, Davis AS, Arac A, Li Z, Maag AL, Bhatnagar R et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516–523

    Article  PubMed  Google Scholar 

  • Dancause N (2006) Vicarious function of remote cortex following stroke: recent evidence from human and animal studies. Neuroscientist 12:489–499

    Article  PubMed  Google Scholar 

  • Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV et al (2005) Extensive cortical rewiring after brain injury. J Neurosci 25:10167–10179

    Article  PubMed  CAS  Google Scholar 

  • Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T et al (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31:235–242

    Article  PubMed  Google Scholar 

  • Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40:2945–2948

    Article  PubMed  Google Scholar 

  • Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP et al (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23:510–517

    PubMed  CAS  Google Scholar 

  • Englund U, Fricker-Gates RA, Lundberg C, Bjorklund A, Wictorin K (2002) Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 173:1–21

    Article  PubMed  CAS  Google Scholar 

  • Galtrey CM, Asher RA, Nothias F, Fawcett JW (2007) Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair. Brain 130:926–939

    Article  PubMed  Google Scholar 

  • Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CL, Kolb B (2003) A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci 18:1950–1962

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, Bliss T, De Los Angeles A, Moseley M, Palmer T, Steinberg G (2008a) Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res 86:873–882

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, Choi R, Gera A, DeLosAngeles A, Andres RH, Steinberg GK (2008b) Intravascular cell replacement therapy for stroke. Neurosurg Focus 24:E15

    Article  PubMed  Google Scholar 

  • Hayashi J, Takagi Y, Fukuda H, Imazato T, Nishimura M, Fujimoto M et al (2006) Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab 26:906–914

    Article  PubMed  Google Scholar 

  • Hicks A, Jolkkonen J (2009) Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 69:1–11

    Google Scholar 

  • Hicks AU, Lappalainen RS, Narkilahti S, Suuronen R, Corbett D, Sivenius J et al (2009) Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 29:562–574

    Article  PubMed  Google Scholar 

  • Himmelseher S, Pfenninger E, Georgieff M (1997) Effects of basic fibroblast growth factor on hippocampal neurons after axonal injury. J Trauma 42:659–664

    Article  PubMed  CAS  Google Scholar 

  • Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A et al (2011) Transplanted stem cell-secreted VEGF effects post-stroke recovery, inflammation, and vascular repair. Stem Cells 29:274–285

    Google Scholar 

  • Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, Shizuko I et al (2004) Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res 78:215–223

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 581:156–160

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163

    PubMed  CAS  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC et al (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844

    Article  PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11:96–104

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    Article  PubMed  Google Scholar 

  • Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523

    Article  PubMed  CAS  Google Scholar 

  • Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL et al (2010) An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13:1496–1504

    Article  PubMed  CAS  Google Scholar 

  • Liauw J, Hoang S, Choi M, Eroglu C, Sun GH, Percy M et al (2008) Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab 28:1722–1732

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Isacson O (2006) Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 24:2504–2513

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M (2008) Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke 39:2571–2577

    Article  PubMed  Google Scholar 

  • Llado J, Haenggeli C, Maragakis NJ, Snyder EY, Rothstein JD (2004) Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci 27:322–331

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S et al (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66:757–772

    Article  PubMed  CAS  Google Scholar 

  • Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28:9386–9403

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S et al (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105:14638–14643

    Article  PubMed  CAS  Google Scholar 

  • Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28:329–340

    Article  PubMed  CAS  Google Scholar 

  • Onteniente B, Polentes J (2011) Regenerative medicine for stroke – are we there yet? Cerebrovasc Dis 31:544–551

    Article  PubMed  Google Scholar 

  • Osterhout DJ, Frazier WA, Higgins D (1992) Thrombospondin promotes process outgrowth in neurons from the peripheral and central nervous systems. Dev Biol 150:256–265

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E et al (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199:143–155

    Article  PubMed  Google Scholar 

  • Rosenstein JM, Mani N, Khaibullina A, Krum JM (2003) Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 23:11036–11044

    PubMed  CAS  Google Scholar 

  • Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A et al (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13

    Article  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Song HJ, Stevens CF, Gage FH (2002) Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 5:438–445

    PubMed  CAS  Google Scholar 

  • Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J (2009) Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29:10081–10086

    Article  PubMed  CAS  Google Scholar 

  • Toda H, Takahashi J, Iwakami N, Kimura T, Hoki S, Mozumi-Kitamura K et al (2001) Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 316:9–12

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T et al (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    Article  PubMed  Google Scholar 

  • Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD et al (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604

    Article  PubMed  CAS  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Matsuo A, Lin JX, Ihara M et al (2002) Axonal damage and demyelination in the white matter after chronic cerebral hypoperfusion in the rat. Brain Res 924:63–70

    Article  PubMed  CAS  Google Scholar 

  • Wasserman JK, Yang H, Schlichter LC (2008) Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young vs. aged rats. Eur J Neurosci 28:1316–1328

    Article  PubMed  Google Scholar 

  • Wechsler LR (2009) Clinical trials of stroke therapy: which cells, which patients? Stroke 40:S149–S151

    Article  PubMed  Google Scholar 

  • Weidner N, Ner A, Salimi N, Tuszynski MH (2001) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci USA 98:3513–3518

    Article  PubMed  CAS  Google Scholar 

  • Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN (2003) Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem 86:179–195

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14:722–733

    Article  PubMed  CAS  Google Scholar 

  • Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Saatman KE, Royo NC, Soltesz KM, Millard M, Schouten JW et al (2005) Delayed transplantation of human neurons following brain injury in rats: a long-term graft survival and behavior study. J Neurotrauma 22:1456–1474

    Article  PubMed  Google Scholar 

  • Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Steinberg M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hoang, S., Jung, H., Bliss, T., Steinberg, G. (2013). Cell Therapy and Structural Plasticity Following Cerebral Ischemia. In: Jolkkonen, J., Walczak, P. (eds) Cell-Based Therapies in Stroke. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1175-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1175-8_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1174-1

  • Online ISBN: 978-3-7091-1175-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics