Skip to main content

Classical Versus Novel Treatment Regimens

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Summary

The chapter will define drug insensitivity and drug resistance in the context of Leishmania infections, both cutaneous and visceral, and describe the impact on treatment this may have. The molecular mechanisms of drug resistance of antimonials, and of other standard antileishmanial drugs will be reviewed, and the evidence for novel treatment regimens, to compensate for drug resistance, will be explored.

Equal author contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Jaser MA, el-Yazigi A, Croft SL (1995) Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis. Pharm Res 12:113–116

    Article  Google Scholar 

  • Allen S, Neal RA (1989) The in vitro susceptibility of macrophages infected with amastigotes of Leishmania spp. to pentavalent antimonial drugs and other compounds with special relevance to cutaneous leishmaniasis. In: Hart DT (ed) Leishmaniasis. Plenum Publishing Corporation, New York, pp 711–720

    Google Scholar 

  • Al-Mohammed HI, Chance ML, Bates PA (2005) Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother 49:3274–3280

    Article  PubMed  CAS  Google Scholar 

  • Amato VS, et al (2008) Mucosal leishmaniasis. Current scenario and prospects for treatment. Acta Trop 105:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ashutosh, Sundar S, Goyal N (2007) Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 56:143–153

    Article  PubMed  CAS  Google Scholar 

  • Baird JK, Surjadjaja C (2011) Consideration of ethics in primaquine therapy against malaria transmission. Trends Parasitol 27:11–16

    Article  PubMed  Google Scholar 

  • Balaña-Fouce R, et al (1998) The pharmacology of leishmaniasis. Gen Pharmacol 30:435–443

    Article  PubMed  Google Scholar 

  • Berman J (2003) Current treatment approaches to leishmaniasis. Curr Opin Infect Dis 16:397–401

    Article  PubMed  CAS  Google Scholar 

  • Berman J (2005) Miltefosine to treat leishmaniasis. Expert Opin Pharmacother 6:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Berman JD, et al (1982) Susceptibility of clinically sensitive and resistant Leishmania to pentavalent antimony in vitro. Am J Trop Med Hyg 31:459–465

    PubMed  CAS  Google Scholar 

  • Brochu C, et al (2003) Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47:3073–3079

    Article  PubMed  CAS  Google Scholar 

  • Carter KC, et al (2006) Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite {gamma}-glutamylcysteine synthetase. Antimicrob Agents Chemother 50:88–95

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2:167–176

    Article  PubMed  Google Scholar 

  • Chappuis F, et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  PubMed  CAS  Google Scholar 

  • Coelho AC, Beverley SM, Cotrim PC (2003) Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol 130:83–90

    Article  PubMed  CAS  Google Scholar 

  • Coelho AC, et al (2007) Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother 51:3030–3032

    Article  PubMed  CAS  Google Scholar 

  • Coelho AC, et al (2008) Characterization of Leishmania (Leishmania) amazonensis promastigotes resistant to pentamidine. Exp Parasitol 120:98–102

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Seifert K, Yardley V (2006a) Current scenario of drug development for leishmaniasis. Indian J Med Res 123:399–410

    PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006b) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  PubMed  CAS  Google Scholar 

  • Davidson RN, den Boer M, Ritmeijer K (2009) Paromomycin. Trans R Soc Trop Med Hyg 103:653–660

    Article  PubMed  CAS  Google Scholar 

  • Denton H, McGregor JC, Coombs GH (2004) Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J 381:405–412

    Article  PubMed  CAS  Google Scholar 

  • Dorlo TP, et al (2008) Pharmacokinetics of miltefosine in old world cutaneous leishmaniasis patients. Antimicrob Agents Chemother 52:2855–2860

    Article  PubMed  CAS  Google Scholar 

  • Dueñas-Romero AM, Loiseau PM, Saint-Pierre-Chazalet M (2007) Interaction of sitamaquine with membrane lipids of Leishmania donovani promastigotes. Biochim Biophys Acta 1768:246–252

    Article  PubMed  Google Scholar 

  • Edwards T, et al (2011) Single-dose liposomal amphotericin B (AmBisome(R)) for the treatment of visceral leishmaniasis in East Africa: study protocol for a randomized controlled trial. Trials 12:66

    Article  PubMed  CAS  Google Scholar 

  • El Fadili K, et al (2005) Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother 49:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Ephros M, et al (1999) Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother 43:278–282

    PubMed  CAS  Google Scholar 

  • Escobar P, et al (2002) Sensitivities of Leishmania species to hexadecylphophocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B. Acta Trop 81:151–157

    Article  PubMed  CAS  Google Scholar 

  • Ferreira Cdos S, et al (2003) Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals 16:441–446

    Article  PubMed  Google Scholar 

  • Frezard F, Demicheli C (2010) New delivery strategies for the old pentavalent antimonial drugs. Expert Opin Drug Deliv 7:1343–1358

    Article  PubMed  CAS  Google Scholar 

  • Frézard F, et al (2001) Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother 45:913–916

    Article  PubMed  Google Scholar 

  • Goto H, Lindoso JA (2010) Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Rev Anti Infect Ther 8:419–433

    Article  PubMed  Google Scholar 

  • Gourbal B, et al (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  PubMed  CAS  Google Scholar 

  • Guerin PJ, et al (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2:494–501

    Article  PubMed  Google Scholar 

  • Hailu A, et al (2005) Visceral leishmaniasis: new health tools are needed. PLoS Med 2:e211

    Article  PubMed  Google Scholar 

  • Holzmuller P, Bras-Gonçalves R, Lemesre JL (2006) Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania. Parasitology 132(Suppl):S19–S32

    Article  PubMed  CAS  Google Scholar 

  • Jha TK, et al (2005) A phase II dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India. Am J Trop Med Hyg 73:1005–1011

    PubMed  CAS  Google Scholar 

  • Jhingran A, et al (2009) Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol 164:111–117

    Article  PubMed  CAS  Google Scholar 

  • Laguna F (2003) Treatment of leishmaniasis in HIV-positive patients. Ann Trop Med Parasitol 97(Suppl 1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Maarouf M, et al (1997a) In vivo interference of paromomycin with mitochondrial activity of Leishmania. Exp Cell Res 232:339–348

    Article  PubMed  CAS  Google Scholar 

  • Maarouf M, et al (1997b) Biochemical alterations in paromomycin-treated Leishmania donovani promastigotes. Parasitol Res 83:198–202

    Article  PubMed  CAS  Google Scholar 

  • Maarouf M, et al (1998) Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite 5:167–173

    PubMed  CAS  Google Scholar 

  • Maharjan M, et al (2008) Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg 79:69–75

    PubMed  CAS  Google Scholar 

  • Malafaia G (2009) Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol 31:587–596

    Article  PubMed  CAS  Google Scholar 

  • Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010:617521

    Article  PubMed  Google Scholar 

  • Mandal G, et al (2007) Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology 134:1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, et al (2010) Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J Antimicrob Chemother 65:496–507

    Article  PubMed  CAS  Google Scholar 

  • Martin D (2010) Identification and development of new chemical entities to treat visceral leishmaniasis: a bump road. ICOPA XII, Melbourne, Australia: 26

    Google Scholar 

  • Matlashewski G, et al (2011) Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis 11:322–325

    Article  PubMed  Google Scholar 

  • Meheus F, et al (2010) Cost-effectiveness analysis of combination therapies for visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis 4:e818

    Article  PubMed  Google Scholar 

  • Mishra J, Carpenter S, Singh S (2010) Low serum zinc levels in an endemic area of visceral leishmaniasis in Bihar, India. Indian J Med Res 131:793–798

    PubMed  CAS  Google Scholar 

  • Mitropoulos P, Konidas P, Durkin-Konidas M (2010) New world cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol 63:309–322

    Article  PubMed  Google Scholar 

  • Mittal MK, et al (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76:681–688

    PubMed  CAS  Google Scholar 

  • MMV (2009) Tafenoquine phase I. GSK, UK. http://www.mmv.org/research-development/project-portfolio/tafenoquine

  • Moore EM, Lockwood DN (2010) Treatment of visceral leishmaniasis. J Glob Infect Dis 2(2):151–158

    Article  PubMed  CAS  Google Scholar 

  • Moore E, et al (2001) Comparison of generic and proprietary sodium stibogluconate for the treatment of visceral leishmaniasis in Kenya. Bull World Health Organ 79:388–393

    PubMed  CAS  Google Scholar 

  • Morrone A, et al (2011) Epidemiological and geographical aspects of leishmaniasis in Tigray, northern Ethiopia: a retrospective analysis of medical records, 2005–2008. Trans R Soc Trop Med Hyg 105(5):273–280

    Article  PubMed  Google Scholar 

  • Mukherjee A, et al (2006) Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol 145:1–10

    Article  PubMed  CAS  Google Scholar 

  • Murray HW (2001) Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother 45:2185–2197

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, et al (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  PubMed  CAS  Google Scholar 

  • Navin TR, et al (1992) Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165:528–534

    Article  PubMed  CAS  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7:257–266

    Article  PubMed  CAS  Google Scholar 

  • Palumbo E (2008) Oral miltefosine treatment in children with visceral leishmaniasis: a brief review. Braz J Infect Dis 12:2–4

    PubMed  CAS  Google Scholar 

  • Pérez-Victoria JM, et al (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother 45:2468–2474

    Article  PubMed  Google Scholar 

  • Pérez-Victoria FJ, et al (2006) Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist Updat 9:26–39

    Article  PubMed  Google Scholar 

  • Ritmeijer K, et al (2001) Ethiopian visceral leishmaniasis: generic and proprietary sodium stibogluconate are equivalent; HIV co-infected patients have a poor outcome. Trans R Soc Trop Med Hyg 95:668–672

    Article  PubMed  CAS  Google Scholar 

  • Roberts WL, Berman JD, Rainey PM (1995) In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob Agents Chemother 39:1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14:476–488

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal E, et al (2009) Liposomal amphotericin B as treatment for visceral leishmaniasis in Europe, 2009. Med Mal Infect 39:741–744

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury J, Ali N (2008) Sodium stibogluconate: therapeutic use in the management of leishmaniasis. Indian J Biochem Biophys 45:16–22

    CAS  Google Scholar 

  • Russo R, et al (2003) Visceral leishmaniasis in those infected with HIV: clinical aspects and other opportunistic infections. Ann Trop Med Parasitol 97(Suppl 1):99–105

    Article  PubMed  Google Scholar 

  • Saint-Pierre-Chazalet M, et al (2009) Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother 64:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, et al (2003) Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 22:380–387

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, et al (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30:229–235

    Article  PubMed  CAS  Google Scholar 

  • Seifert K, Escobar P, Croft SL (2010) In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. J Antimicrob Chemother 65:508–511

    Article  PubMed  CAS  Google Scholar 

  • Shaked-Mishan P, et al (2001) Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976

    Article  PubMed  CAS  Google Scholar 

  • Shakya N, Bajpai P et al (2011) Therapeutic switching in Leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs. J Parasit Dis 35(2):104–112, EPub May 2011

    Article  PubMed  Google Scholar 

  • Singh N (2006) Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res 123:411–422

    PubMed  CAS  Google Scholar 

  • Singh S, Sivakumar R (2004) Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 10:307–315

    Article  PubMed  Google Scholar 

  • Singh RK, Pandey HP, Sundar S (2006) Visceral leishmaniasis (kala-azar): challenges ahead. Indian J Med Res 123:331–344

    PubMed  CAS  Google Scholar 

  • Sundar S, Chatterjee M (2006) Visceral leishmaniasis – current therapeutic modalities. Indian J Med Res 123:345–352

    PubMed  CAS  Google Scholar 

  • Sundar S, et al (2003) Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr Infect Dis J 22:434–438

    PubMed  Google Scholar 

  • Sundar S, et al (2011a) Pharmacokinetics of oral sitamaquine taken with or without food and safety and efficacy for treatment of visceral leishmaniais: a randomized study in Bihar, India. Am J Trop Med Hyg 84:892–900

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, et al (2011b) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377:477–486

    Article  PubMed  CAS  Google Scholar 

  • Tekwani BL, Walker LA (2006) 8-Aminoquinolines: future role as antiprotozoal drugs. Curr Opin Infect Dis 19:623–631

    Article  PubMed  CAS  Google Scholar 

  • van Griensven J, Boelaert M (2011) Combination therapy for visceral leishmaniasis. Lancet 377:443–444

    Article  PubMed  Google Scholar 

  • Vanlerberghe V, et al (2007) Drug policy for visceral leishmaniasis: a cost-effectiveness analysis. Trop Med Int Health 12:274–283

    Article  PubMed  CAS  Google Scholar 

  • Wakelin D (1989) Nature and nurture: overcoming constraints on immunity. Parasitology 99(Suppl):S21–S35

    Article  PubMed  Google Scholar 

  • Wernsdorfer WH (1992) The biological and epidemiological basis of drug resistance in malaria parasites. Southeast Asian J Trop Med Public Health 23(Suppl 4):123–129

    PubMed  Google Scholar 

  • Wyllie S, Vickers TJ, Fairlamb AH (2008) Roles of trypanothione s-transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob Agents Chemother 524:1359–1365

    Article  Google Scholar 

  • Yardley V, Gamarro F, Croft SL (2010) Antileishmanial and antitrypanosomal activities of the 8-aminoquinoline tafenoquine. Antimicrob Agents Chemother 54:5356–5358

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, et al (2004) Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem 279:37445–37451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Yardley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Maes, L., da Luz, R.A.I., Cos, P., Yardley, V. (2013). Classical Versus Novel Treatment Regimens. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_15

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics