Skip to main content

New concepts in damping generation and control: theoretical formulation and industrial applications

  • Chapter
Variational Models and Methods in Solid and Fluid Mechanics

Part of the book series: CISM Courses and Lectures ((CISM,volume 535))

Abstract

These notes are finalized to a particular study of the damping mechanism in Hamiltonian systems, characterized indeed by the absence of any energy dissipation effect. It is important to make a clear distinction between the two previous concepts, since they seem to be somehow contradictory. A Hamiltonian system is characterized by an invariant total energy (the Hamiltonian H) that is equivalent to state any energy dissipation process is absent. This circumstance, especially from an engineering point of view, leads to the wrong expectation that the motion of any part of such a dissipation-free system, subjected to some initial conditions, maintains a sort of constant amplitude response. This is, although unexpectedly, a wrong prediction and the “mechanical intuition” leads, in this case, to a false belief. It is indeed true the converse: even in the absence of any energy dissipation mechanisms, mechanical systems can exhibit damping, i.e. a decay amplitude motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A.D. Pierce, V.W. Sparrow and D.A. Russel. Fundamental structuralacoustic idealization for structure with fuzzy internals. Journal of Vibration and Acoustics, 117:339–348, 1995.

    Article  Google Scholar 

  2. M. Strasberg, D. Feit. Vibration damping of large structures induced by attached small resonant structures. Journal of Acoustical Society of America, 99:335–344, 1996.

    Article  Google Scholar 

  3. G. Maidanik. Induced damping by a nearly continuous distribution of a nearly undamped oscillators: linear analysis. Journal of Sound and Vibration, 240:717–731, 2001.

    Article  Google Scholar 

  4. R.L. Weaver. The effect of an undamped finite degree of freedom ‘fuzzy’ substructure: numerical solution and theoretical discussion. Journal of Acoustical Society of America, 101:3159–3164, 1996.

    Article  Google Scholar 

  5. R.J. Nagem, I. Veljkovic, G. Sandri. Vibration damping by a continuous distribution of undamped oscillators. Journal of Sound and Vibration, 207:429–434, 1997.

    Article  Google Scholar 

  6. C.E. Celik, A. Akay. Dissipation in solids: thermal oscillations of atoms. Journal of Acoustical Society of America, 108:184–191, 2000.

    Article  Google Scholar 

  7. R.L. Weaver. Equipartition and mean square response in large undamped structures. Journal of Acoustical Society of America, 110:894–903, 2001.

    Article  Google Scholar 

  8. A. Carcaterra, A. Akay. Transient energy exchange between a primary structure and a set of oscillators: return time and apparent damping. Journal of Acoustical Society of America, 115:683–696, 2004.

    Article  Google Scholar 

  9. I. Murat Koç, A. Carcaterra, Zhaoshun Xu, A. Akay. Energy sinks: vibration absorption by an optimal set of undamped oscillators. Journal of Acoustical Society of America, 118:3031–3042, 2005.

    Article  Google Scholar 

  10. A. Carcaterra, A. Akay, I.M. Koc. Near-Irreversibility and damped response of a conservative linear structure with singularity points in its modal density. Journal of Acoustical Society of America, 119:2124-, 2006.

    Article  Google Scholar 

  11. A. Akay, Zhaoshun Xu, A. Carcaterra, I. Murat Koc. Experiments on vibration absorption using energy sinks. Journal of Acoustical Society of America, 118: 3043–3049, 2005.

    Article  Google Scholar 

  12. A. Carcaterra. An entropy formulation for the analysis of energy flow between mechanical resonators. Mechanical Systems and Signal Processing, 16:905–920, 2002.

    Article  Google Scholar 

  13. A. Carcaterra. Ensemble energy average and energy flow relationships for nonstationary vibrating systems. Journal of Sound and Vibration, Special Issue Uncertainty in structural dynamics, 288:751–790, 2005.

    Google Scholar 

  14. T.Y. Petrosky. Chaos and irreversibility in a conservative nonlinear dynamical system with a few degrees of freedom. Physical Review A, 29:2078–2091, 1984.

    Article  MathSciNet  Google Scholar 

  15. P.K. Datta, K. Kundu. Energy transport in one-dimensional harmonic chains. Physical Review B, 51:6287–6295, 1995.

    Article  Google Scholar 

  16. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani. Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model. Physical Review A, 31:1039–1045, 1985.

    Article  Google Scholar 

  17. R.R. Nigmatullin, A. Le Mehaute. To the nature of irreversibility in linear systems. Magnetic Resonance in Solids, 6:165–179, 2004.

    Google Scholar 

  18. M.G. Kendall, A. Stuart. The advanced theory of statistics. Charles Griffin & Company Limited, London,, 1961.

    Google Scholar 

  19. E.J.G. Pitman. Sufficient statistics and intrinsic accuracy. Proc. Cambridge Philosophical Society, 32:576, 1936.

    Google Scholar 

  20. M. V. Drexel, J.H. Ginsberg, Modal overlap and dissipation effects of a cantilever beam with multiple attached oscillators, Journal of Vibration and Acoustics, vol.123, 181–187, 2001.

    Article  Google Scholar 

  21. A. Carcaterra, A. Akay, Theoretical foundation of apparent damping and energy irreversible energy exchange in linear conservative dynamical systems, Journal of Acoustical Society of America, ISSN: 0001-4966 121, 1971–1982, 2007.

    Article  Google Scholar 

  22. A. Carcaterra, A. Akay, F. Lenti, Pseudo-damping in undamped plates and shells, Journal of Acoustical Society of America, ISSN: 0001-4966, vol. 122, 804–813, 2007.

    Article  Google Scholar 

  23. A. Carcaterra Minimum-variance response and irreversible energy confinement, invited lecture, IUTAM Symposium on “The Vibration Analysis of Structures with Uncertainties”, book edited by R.S. Langley. and A. Belyaev, Saint Petersburg, Russia, 2009.

    Google Scholar 

  24. F. dell’Isola, C. Maurini, M. Porfiri, Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation, Smart Material and Structures, 13(2), 2004.

    Google Scholar 

  25. F. dell’Isola, C. Maurini, S. Vidoli, Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers, Compte Rendus Mecanique, 331(1), 2003.

    Google Scholar 

  26. F. Magionesi, A. Carcaterra, Insights into the energy equipartition principle in undamped engineering structures, Journal of Sound and Vibration, ISSN: 0022-460X, 322(4–5), 851–869, 2008.

    Google Scholar 

  27. N. Roveri, A. Carcaterra, A. Akay, Vibration absorption using nondissipative complex attachments with impacts and parametric stiffness, Journal of the Acoustical Society of America, 126(5), 2306–2314, 2009.

    Article  Google Scholar 

  28. N. Roveri, A. Carcaterra, A. Akay, Energy equipartition and frequency distribution in complex attachments, Journal of the Acoustical Society of America 126(1), 122–128, 2009.

    Article  Google Scholar 

  29. A. Carcaterra, A. Sestieri, Energy Density Equations and Power Flow in Structures, Journal of Sound and Vibration, Academic Press, ISSN 0022-460X, vol. 188(2), 269–282, 1995.

    Article  Google Scholar 

  30. A. Carcaterra, Wavelength scale effect in energy propagation in structures, 13–24, in Statistical Energy Analysis, della collana Solid Mechanics and Its Applications vol. 67, IUTAM, Kluwer Academic Publishers, Dordrecht, ISBN 0-7923-5457-5, 1999.

    Google Scholar 

  31. A. Carcaterra, L. Adamo, Thermal Analogy in Wave Energy Transfer: Theoretical and Experimental Analysis, Journal of Sound and Vibration, ISSN 0022-460X, Academic Press, vol. 226(2), 253–284, 1999.

    Article  Google Scholar 

  32. I. Prigogine, G. Nicolis, Self-Organization in Nonequilibrium Systems, John Wiley & Sons, 1977.

    Google Scholar 

  33. H. Mori, Y. Kuramoto, Dissipative Structures and Chaos, Springer, 1998.

    Google Scholar 

  34. I. Prigogine, I. Stengers, La Nouvelle Alliance, Gallimard, Paris, 1979.

    Google Scholar 

  35. O. Costa de Beauregard, Le second principe de la science du temps, Editions du Seuil, Paris, 1963.

    Google Scholar 

  36. C. Cercignani, Ludwig Boltzmann-The Man Who Trusted Atoms, Oxford University Press, 1998.

    Google Scholar 

  37. H.R. Brown, W. Myrvold, J. Uffink, Boltzmann H-theorem, its discontents, and the birth of statistical mechanics, Studies in History and Philosophy of Modern Physics, 40, 174–191, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. dell’Isola and S. Vidoli, Continuum modelling of piezoelectromechanical truss beams: An application to vibration damping, Archive of Applied Mechanics, 68:1–19, 1998

    Article  Google Scholar 

  39. S. Vidoli and F. dell’Isola, Modal coupling in one-dimensional electromechanical structured continua, Acta Mechanica, 141:37–50, 2000.

    Article  MATH  Google Scholar 

  40. U. Andreaus, F. dell’Isola, and M. Porfiri, Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations, Journal of Vibration and Control, 10:625, 2004.

    Article  MATH  Google Scholar 

  41. C. Maurini, F. dell’Isola, and D. Del Vescovo, Comparison of piezoelectronic networks acting as distributed vibration absorbers, Mechanical Systems and Signal Processing, 18:1243–1271, 2004.

    Article  Google Scholar 

  42. F. dell’Isola and L. Rosa, Almansi-type boundary conditions for electric potential inducing flexure in linear piezoelectric beams, Continuum Mechanics and Thermodynamics, 9:115–125, 1997.

    Article  MathSciNet  Google Scholar 

  43. F. dell’Isola and S. Vidoli, Damping of bending waves in truss beams by electrical transmission lines with PZT actuators, Archive of Applied Mechanics, 68:626–636, 1998.

    Article  Google Scholar 

  44. S. Vidoli and F. dell’Isola, Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks, European Journal of Mechanics, A/Solids, 20:435–456, 2001.

    Article  MATH  Google Scholar 

  45. S. Alessandroni, F. dell’Isola, and F. Frezza, Optimal piezo-electromechanical coupling to control plate vibrations, International Journal of Applied Electromagnetics and Mechanics, 13:113–120, 2001.

    Google Scholar 

  46. F. dell’Isola, E.G. Henneke, and M. Porfiri, Synthesis of electrical networks interconnecting PZT actuators to damp mechanical vibrations, International Journal of Applied Electromagnetics and Mechanics, 14:417–424, 2001.

    Google Scholar 

  47. S. Alessandroni, F. dell’Isola, and M. Porfiri, A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators, International Journal of Solids and Structures, 39:5295–5324, 2002.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Carcaterra, A. (2011). New concepts in damping generation and control: theoretical formulation and industrial applications. In: dell’Isola, F., Gavrilyuk, S. (eds) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol 535. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0983-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0983-0_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0982-3

  • Online ISBN: 978-3-7091-0983-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics