Skip to main content

Large wind turbines in earthquake areas: structural analyses, design/construction & in-situ testing

  • Chapter
Environmental Wind Engineering and Design of Wind Energy Structures

Part of the book series: CISM Courses and Lectures ((CISM,volume 531))

  • 2555 Accesses

Abstract

The Wind Energy Roadmap for the European Union was published by the European Commission on Oct. 7th, 2009, in the framework of its Communication of Financing Low Carbon Technologies. Following its publication, the roadmap was officially presented and discussed at the Strategic Energy Technology Plan (SET-Plan) workshop, held in Stockholm on October 21st and 22nd 2009, and organised by the European Commission and the Swedish Energy Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brebbia, C.A., Dominguez, J. (1998). Boundary Elements, An Introductory Course. WIT Press, Boston, Southampton.

    Google Scholar 

  • Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. (2001). Wind Energy Handbook, John Wiley & Sons.

    Google Scholar 

  • Cointe, R. (1990). Numerical simulation of a wave channel. Engineering Analysis with Boundary Elements 7(4), 167–177.

    Article  Google Scholar 

  • Dold, J.W. (1992). An efficient surface-integral algorithm applied to unsteady gravity waves. Journal of Computational Physics 103, 90–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Grilli, S.T., Svendsen, I.A. (1990). Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engineering Analysis with Boundary Elements 7(4), 178–195.

    Article  Google Scholar 

  • Grilli, S.T., Skourup, J., Svedsen I.A. (1989). An efficient boundary element method for nonlinear water waves. Engineering Analysis with Boundary Elements 6(2), 97–107.

    Article  Google Scholar 

  • Hansen, M. O. L. (2008). Aerodynamics of Wind Turbines. Earthscan.

    Google Scholar 

  • Hau, E. (2006). Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer.

    Google Scholar 

  • Jonkman, J. M., 2005. Buhl Jr., M.L. 2005. FAST User’s Guide, NREL/EL-500-29798. Golden, Colorado: National Renewable Energy Laboratory.

    Google Scholar 

  • Jonkman, J. Butterfield, S. Musial, W. Scott, G. 2009. Definition of a 5-MW reference wind turbine for offshore system development. Technical Report, NREL.

    Google Scholar 

  • Longuet-Higgins, M.S., Cokelet, E.D. 1976. The deformation of steep surface waves on water, I. A numerical method of computation. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 350(1660):1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Machane, R., Canot, E. 1997. High-order schemes in boundary element methods for transient non-linear free surface problems. International Journal for Numerical Methods in Fluids 24(10), 1049–1072.

    Article  MathSciNet  MATH  Google Scholar 

  • Marino, E. (2010). An Integrated Nonlinear Wind-Waves Model for Offshore Wind Turbines. PhD Thesis.

    Google Scholar 

  • Marino, E., Borri, C., Peil, U. (2010). Offshore wind turbines: a wind-fully nonlinear waves integrated model. Submitted to The Fifth International Symposium on Computational Wind Engineering (CWE2010).

    Google Scholar 

  • Moriarty, P. J., Hansen, A. C. (2005). Aerodyn theory manual. Technical report, NREL/EL-500-36881.

    Google Scholar 

  • Morison, J. R., O’Brien, M.P., Johnson, J.W., Schaaf, S.A. 1950. The force exerted by surface wave on piles. Petroleum Transactions (American Institute of Mining Engineers) 154, 189–149.

    Google Scholar 

  • Nakayama, T. 1983. Boundary element analysis of nonlinear water wave problems. International Journal for Numerical Methods in Engineering 19(7), 953–970.

    Article  MATH  Google Scholar 

  • Nakayama, T. 1990. A computational method for simulating transient motions of an incompressible inviscid fluid with a free surface. International Journal for Numerical Methods in Fluids 10(6), 683–695.

    Article  MATH  Google Scholar 

  • Peil, U., Corte, C. 2005. Numerical simulation of breaking wave load on offshore wind turbines. J. Napstrek & C. Fisher (eds); ITAM AS CR, Prague.

    Google Scholar 

  • Peregrine, D.H., Dold, J.W. 1986. An efficient boundary integral method for steep unsteady water waves. Numerical Methods for Fluid Dynamics II, 671–679.

    Google Scholar 

  • Tsai, W., Yue, D.K.P. 1996. Computation of nonlinear free-surface flows. Annual Review of Fluid Mechanics 28,249–278.

    Article  MathSciNet  Google Scholar 

  • Wang, P. Yitao, Y. Tulin, M.P. 1995. An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM. International Journal for Numerical Methods in Fluids 20, 1315–1336.

    Article  MATH  Google Scholar 

  • Wienke, J., Oumeraci, H. (2005). Breaking wave impact force on a vertical and inclined slender pile-theoretical and large-scale model investigations. Coastal Engineering 52, 435–462.

    Article  Google Scholar 

  • Wind energy statistics. (2008). European Wind Energy Association (EWEA).

    Google Scholar 

  • Global Wind Report (2008). Technical report, Global Wind Energy Council (GWEC).

    Google Scholar 

  • IEC 61400-1, 3rd ed. 2005. International Standards. Wind turbines Part 1:Design requirements.

    Google Scholar 

  • Norme Tecniche per le Costruzioni (2008). Ministero delle Infrastrutture, Italy, 14.01.2008.

    Google Scholar 

  • UNI EN 1990:2006 (2006). Eurocode 1: Basis of structural design.

    Google Scholar 

  • UNI EN 1992-1-1:2005 (2005). Eurocode 2: Design of concrete structures — Part 1-1: General rules and rules for buildings.

    Google Scholar 

  • DIBt (2004). Richtlinie für Windenergieanlagen, Deutsches Institut für Bautechnik.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Borri, C., Biagini, P., Marino, E. (2011). Large wind turbines in earthquake areas: structural analyses, design/construction & in-situ testing. In: Baniotopoulos, C.C., Borri, C., Stathopoulos, T. (eds) Environmental Wind Engineering and Design of Wind Energy Structures. CISM Courses and Lectures, vol 531. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0953-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0953-3_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0952-6

  • Online ISBN: 978-3-7091-0953-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics