Skip to main content

Part of the book series: CISM Courses and Lectures ((CISM,volume 531))

Abstract

The wind energy market is one of the most promising markets of renewable energies. Besides biomass, photovoltaic, geothermal, and ocean energy especially the offshore wind energy will deliver the biggest part in renewable electricity. Regarding National and European demands for 2030, 25% of the required electricity will result from renewables. The biggest player will be the wind energy. To reach this aim a significant installation of offshore and onshore wind energy turbines is necessary. Figure 1 shows the estimated annual installation and cumulated capacity of onshore and offshore wind energy in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almar-Naes (1985): Fatigue Handbook — offshore steel structures. Norges tekniske högskole published by the Tapir Publishers. Trondheim, Norway. 1985.

    Google Scholar 

  • API-RP-2A-WSD (2000): Recommended Practice for the Planning, Designing and Constructing — Fixed Offshore Platforms — Working Stress Design. American Petroleum Institute, Recommended Practice, 21st Edition. Washington, USA. 12/2000.

    Google Scholar 

  • Bignonnet, A (1987): Corrosion Fatigue of Steel in Marine Structures — A Decade of Progress. In: Steel in Marine Structures edited by C Nordhoek and J de Back, Elsevier, Amsterdam, The Netherlands, 1987.

    Google Scholar 

  • Böker (2009): Load simulation and local dynamics of support structures for offshore eind turbines. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2009.

    Google Scholar 

  • BSH (2007): Standard — Design of Offshore Wind Turbines. Federal Maritime and Hydrographic Agency (BSH). Hamburg, Germany. December 2007.

    Google Scholar 

  • Ciamberlano F (2006): Engineering Insurance of Offshore Wind Turbines. Proceedings of the 39th IMIA Annual Conference. 12. September, Bosten, USA, 2006.

    Google Scholar 

  • DIBt (2004): Richtlinie fĂĽr Windenergieanlagen — Einwirkungen und Standsicherheitsnachweise fĂĽr Turm und GrĂĽndung. Deutsches Institut fĂĽr Bautechnik (DIBt). Berlin, Germany. March 2004 (in german)

    Google Scholar 

  • DIN 18800-1 (2008): Steel Structures — Part1: Design and Construction. Normenausschuss Bauwesen (NABau) im DIN. Beuth Verlag Berlin, Germany. 11/2008

    Google Scholar 

  • DIN 18800-2 (2008): Steel Structures — Part2: Stability — Buckling of bars and skeletal structures. Normenausschuss Bauwesen (NABau) im DIN. Beuth Verlag Berlin, Germany. 11/2008

    Google Scholar 

  • DIN 18800-7 (2008): Steel Structures-Part 7: Execution and constructor’s qualification. Normenausschuss Bauwesen (NABau) im DIN. Normenausschuss SchweiĂźtechnik (NAS) im DIN. Beuth Verlag Berlin, Germany. 11/2008

    Google Scholar 

  • DNV-RP-C205 (2007): Environmental conditions and environmental loads. Høvik, Norway. Det Norske Veritas, April 2007.

    Google Scholar 

  • DNV-OS-J101 (2007): Design of Offshore Wind Turbine Structures. Høvik, Norway. Det Norske Veritas, October 2007.

    Google Scholar 

  • EN 1993-1-1 (2005): Eurocode 3: Design of steel structures — Part 1-1: General rules and rules for buildings. CEN. Brussels, Belgium. 2005.

    Google Scholar 

  • EN 1993-1-8 (2005): Eurocode 3: Design of steel structures — Part 1-8: Design of joints. CEN European Committee for Standardization. Brussels, Belgium. 2005.

    Google Scholar 

  • EN 1993-1-9 (2005): Eurocode 3: Design of steel structures — Part 1-9: Fatigue. CEN European Committee for Standardization. Brussels, Belgium. 2005.

    Google Scholar 

  • EN 10056-1 (1998): Structural Steel equal or unequal leg angles — Part 1: Dimensions. NA Eisen und Stahl (FES) im DIN, Beuth Verlag. Berlin, Germany. 10.1998.

    Google Scholar 

  • ENV 1993-3-2 (1997): Eurocode 3: Design of steel structures — Part 3-2: Towers, masts and chimneys, CEN European Committee for Standardization. Brussels, Belgium. 1997.

    Google Scholar 

  • Greenpeace (2000): North Sea Offshore Wind — A powerhouse for Europe. Technical Possibilities and Ecological Considerations — Study. Deutsches Windenergie Institut DEWI. Wilhelmshaven, Germany. 2000.

    Google Scholar 

  • GL-Onshore Guideline (2003): Guideline for the certification of Wind Turbines. Germanischer Lloyd Industrial Services. Hamburg, Germany. Edition 2003 with Supplement 2004, November 2003.

    Google Scholar 

  • GL-Offshore Guideline (2005): Guideline for the certification of Offshore Wind Turbines, Germanischer Lloyd Industrial Services. Hamburg, Germany. June 2005.

    Google Scholar 

  • Hapel K-H (1990): Festigkeitsanalyse dynamisch beanspruchter Offshore-Konstruktionen. Vieweg-Verlag Braunschweig, Germany.

    Google Scholar 

  • Kleineidam P (2005): Zur Bemessung der Tragstrukturen von Offshore-Windenergieanlagen gegen ErmĂĽdung. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2005.

    Google Scholar 

  • IIW (2007): XIII-2151-07/XV-1254-07 — Recommendations for Fatigue Design of Welded Joints and Components. International Institute of Welding IIW, edited by A. Hobbacher. Paris, France. May 2007.

    Google Scholar 

  • IEC 61400-3 (2005) Ed. 3, Wind Turbines — Part 1: Design Requirements, International IEC 61400-1 Electrotechnical Commission (IEC). Genève, Switzerland. 2005.

    Google Scholar 

  • IEC 61400-3 (2009) Ed. 1, Wind Turbines — Part 3: Design Requirements for Offshore Wind Turbines, International Electrotechnical Commission (IEC). Genèeve, Switzerland. 2009.

    Google Scholar 

  • Mittendorf K (2006): Hydromechanical Design Parameters and Design Loads for Offshore Wind Energy Converters. Dissertation Thesis, Leibniz Universität Hannover. Hannover: Institute of Fluid Mechanics, 2006.

    Google Scholar 

  • Petersen (2001): Stahlbau — Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten. Vieweg Verlag. Wiesbaden, Germany. 2001

    Google Scholar 

  • Pierson W J and Moskowitz L (1964): A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigordskii, Journal of Geophysical Research 69: 5181–5190.

    Article  Google Scholar 

  • Radaj and Sonsino (2006): Fatigue assessment of welded joints by local approaches. 2nd edition. Woodhead Publishing Ltd. & Maney Publishing Ltd., Cambridge, UK. 2006.

    Book  Google Scholar 

  • Schaumann et al. (2007–01): Tragstrukturen fĂĽr Windenergieanlagen. in: Stahlbaukalender 2007. Edited by U Kuhlmann. Verlag Ernst & Sohn. Berlin, Germany. 2007.

    Google Scholar 

  • Schaumann et al. (2007–02): Numerical Analysis of the Load Bearing Behavior of Slip Resistant Prestressed Bolt Connections with Consideration of Adhesion. Bauingenieur. Heft 2, p. 77–84. Springer Verlag. DĂĽsseldorf, Germany. 2007. (in german).

    Google Scholar 

  • Schaumann et al. (2010): Fatigue design for axially loaded grouted connections of offshore wind turbine support structures in deeper waters. Proceedings of the 12th Biennial ASCE Aerospace Division International Conference. 14th–17th March, Honolulu, Hawaii. 2010.

    Google Scholar 

  • Seidel (2001): Zur Bemessung geschraubter Ringflanschverbindungen von Windenergieanlagen. Dissertation Thesis. Institute for Steel Construction, Leibniz Universität Hannover. Aachen: Shaker, 2001.

    Google Scholar 

  • Schmidt/ Neuper (1997): Zum elastostatischen Tragverhalten exzentrisch gezogener L-Stöße mit vorgespannten Schrauben. Stahlbau 66, Heft 3. Ernst&Sohn. Berlin, Germany 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Schaumann, P., Böker, C., Bechtel, A., Lochte-Holtgreven, S. (2011). Support Structures of Wind Energy Converters. In: Baniotopoulos, C.C., Borri, C., Stathopoulos, T. (eds) Environmental Wind Engineering and Design of Wind Energy Structures. CISM Courses and Lectures, vol 531. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0953-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0953-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0952-6

  • Online ISBN: 978-3-7091-0953-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics