Skip to main content

Part of the book series: CISM Courses and Lectures ((CISM,volume 530))

Abstract

Stability of electrohydrodynamic flows is essential to a variety of applications ranging from electrokinetic assays to electro-spray ionization. In this series of lecture notes, a few basic concepts of electrohydrodynamic stability are illustrated using two model problems, electrokinetic mixing flow and electrohydrodynamic cone-jet, respectively wall-bounded and free surface flow. After a review of the governing equations, spatiotemporal analysis of the two example problems is presented using linearized bulk- or surface-coupled models. The operating regimes for these flows are discussed within the framework of electrohydrodynamic stability.

I am indebted to the organizer, Dr. A. Ramos, who graciously helped on delivering the videotaped lectures as a result of visa complications that prevented me from traveling to CISM. My Ph.D. adviser J. G. Santiago helped on the initial outline of the lecture notes. Drs. M. P. Brenner and A. M. Ganan-Calvo provided helpful correspondence about their research. This work was funded in part by an NSF CAREER Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. G. Bailey. Electrostatic Spraying of Liquids. Research Studies Press, 1988.

    Google Scholar 

  • A. Barrero and I. G. Loscertales. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech., 39:89–106, 2007.

    Article  Google Scholar 

  • J. C. Baygents and F. Baldessari. Electrohydrodynamic instability in a thin fluid layer with an electrical conductivity gradient. Phys. Fluids, 10:301–311, 1998.

    Article  Google Scholar 

  • H. C. Chang and L. Y. Yeo. Electrokinetically-Driven Microfluidics and Nanofluidics. Cambridge University Press, 2010.

    Google Scholar 

  • C. H. Chen, H. Lin, S. K. Lele, and J. G. Santiago. Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech., 524:263–303, 2005.

    Article  MATH  Google Scholar 

  • C. H. Chen, D. A. Saville, and I. A. Aksay. Electrohydrodynamic ‘drop- and-place’ particle deployment. Appl. Phys. Lett., 88:154104, 2006a.

    Article  Google Scholar 

  • C. H. Chen, D. A. Saville, and I. A. Aksay. Scaling laws for pulsed electrohydrodynamic drop formation. Appl. Phys. Lett., 89:124103, 2006b.

    Article  Google Scholar 

  • M. Cloupeau and B. Prunet-Foch. Electrostatic spraying of liquids in cone-jet mode. J. Electrostat., 22:135–159, 1989.

    Article  Google Scholar 

  • M. Cloupeau and B. Prunet-Foch. Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol Sci., 25:1021–1036, 1994.

    Article  Google Scholar 

  • D. Duft, T. Achtzehn, R. Muller, B. A. Huber, and T. Leisner. Coulomb fission: Rayleigh jets from levitated microdroplets. Nature, 421:128, 2003.

    Article  Google Scholar 

  • J. Eggers and E. Villermaux. Physics of liquid jets. Rep. Prog. Phys., 71: 036601, 2008.

    Article  Google Scholar 

  • J. J. Feng. The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys. Fluids, 14:3912–3926, 2002.

    Article  Google Scholar 

  • J. Fernandez de la Mora. On the outcome of the coulombic fission of a charged isolated drop. J. Colloid Interface Sci., 178:209–218, 1996.

    Article  Google Scholar 

  • J. Fernandez de la Mora. The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech., 39:217–243, 2007.

    Article  MathSciNet  Google Scholar 

  • J. Fernandez de la Mora and I. G. Loscertales. The current emitted by highly conducting Taylor cones. J. Fluid Mech., 260:155–184, 1994.

    Article  Google Scholar 

  • A. M. Ganan-Calvo. On the theory of electrohydrodynamically driven capillary jets. J. Fluid Mech., 335:165–188, 1997a.

    Article  MathSciNet  MATH  Google Scholar 

  • A. M. Ganan-Calvo. Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett., 79:217–220, 1997b.

    Article  Google Scholar 

  • A. M. Ganan-Calvo and J. M. Montanero. Revision of capillary cone-jet physics: electrospray and flow focusing. Phys. Rev. E, 79:066305, 2009.

    Article  Google Scholar 

  • J. M. Grace and J. C. M. Marijnissen. A review of liquid atomization by electrical means. J. Aerosol Sci., 25:1005–1019, 1994.

    Article  Google Scholar 

  • I. Hayati, A. I. Bailey, and Th. F. Tadros. Mechanism of stable jet formation in electrohydrodynamic atomization. Nature, 319:41–43, 1986.

    Article  Google Scholar 

  • J. F. Hoburg and J. R. Melcher. Internal electrohydrodynamic instability and mixing of fluids with orthogonal field and conductivity gradients. J. Fluid Mech., 73:333–351, 1976.

    Article  MATH  Google Scholar 

  • M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids, 13:2201–2220, 2001a.

    Article  MathSciNet  Google Scholar 

  • M. Hohman, M. Shin, G. C. Rutledge, and M. P. Brenner. Elect rospinning and electrically forced jets. II. Applications. Phys. Fluids, 13:2221–2236, 2001b.

    Article  MathSciNet  Google Scholar 

  • P. Huerre and M. Rossi. Hydrodynamic instabilities in open flows. In C. Godreche and P. Manneville, editors, Hydrodynamics and Nonlinear Instabilities. Cambridge University Press, 1998.

    Google Scholar 

  • R. Juraschek and F. W. Rollgen. Pulsation phenomena during electrospray ionization. Int. J. Mass. Spectrom, 177:1–15, 1998.

    Article  Google Scholar 

  • P. Kebarle and U. H. Verkerk. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev., 28:898–917, 2009.

    Article  Google Scholar 

  • L. G. Leal. Advanced Transport Phenomena. Cambridge University Press, 2007.

    Google Scholar 

  • W. G. Levich. Physicochemical Hydrodynamics. Prentice-Hall, 1962.

    Google Scholar 

  • H. Lin. Electrokinetic instability in microchannel flows: a review. Mech. Res. Comm., 36:33–38, 2009.

    Article  MATH  Google Scholar 

  • H. Lin, B. D. Storey, M. H. Oddy, C. H. Chen, and J.G. Santiago. Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids, 16:1922–1935, 2004.

    Article  Google Scholar 

  • J. M. Lopez-Herrera, A. M. Ganan-Calvo, and M. A. Herrada. Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Phys. Fluids, 17:034106, 2005.

    Google Scholar 

  • J. M. Lopez-Herrera, P. Riesco-Chueca, and A. M. Ganan-Calvo. Absolute to convective instability transition in charged liquid jets. Phys. Fluids, 22:062002, 2010.

    Article  Google Scholar 

  • A. Manz, N. Graber, and H. M. Widmer. Miniaturized total chemical-analysis systems — a novel concept for chemical sensing. Sensors and Actuators-B, 1:244–248, 1990.

    Article  Google Scholar 

  • I. Marginean, P. Nemes, L. Parvin, and A. Vertes. How much charge is there on a pulsating Taylor cone? Appl. Phys. Lett., 89:064104, 2006.

    Article  Google Scholar 

  • I. Marginean, P. Nemes, and A. Vertes. Astable regime in electrosprays. Phys. Rev. E, 76:026320, 2007.

    Article  Google Scholar 

  • J. R. Melcher. Electric fields and moving media. IEEE Trans. Educ., E-17: 100–110, 1974. This article describes the 16 mm film by J. R. Melcher, Electric Fields and Moving Media, produced by the Education Development Center, 39 Chapel Street, Newton, MA.

    Article  Google Scholar 

  • J. R. Melcher. Continuum Electromechanics. MIT Press, 1981.

    Google Scholar 

  • J. R. Melcher and W. J. Schwartz. Interfacial relaxation overstability in a tangential electric field. Phys. Fluids, 11:2604–2616, 1968.

    Article  Google Scholar 

  • J. R. Melcher and G. I. Taylor. Electrohydrodynamics: a review of the role of interfacial shear stress. Annu. Rev. Fluid Mech., 1:111–146, 1969.

    Article  Google Scholar 

  • J. R. Melcher and E. P. Warren. Electrohydrodynamics of a current-carrying semi-insulating jet. J. Fluid Mech., 47:127–143, 1971.

    Article  Google Scholar 

  • M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen. Electrokinetic instability micromixing. Anal. Chem., 73:5822–5832, 2001.

    Article  Google Scholar 

  • W. K. H. Panofsky and M. Phillips. Classical Electricity and Magnetism. Addison-Wesley, 2nd edition, 1962. Dover, 2005.

    Google Scholar 

  • J. U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J.A. Rogers. High-resolution electrohydrodynamic jet printing. Nat. Mater., 6:782–789, 2007.

    Article  Google Scholar 

  • J. D. Posner and J. G. Santiago. Convective instability of electrokinetic flows in a cross-shaped microchannel. J. Fluid Mech., 555:1–42, 2006.

    Article  MATH  Google Scholar 

  • Lord Rayleigh. On the instability of jets. Proc. London Math. Soc., 10: 4–13, 1879.

    MATH  Google Scholar 

  • Lord Rayleigh. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag., 14:184–186, 1882.

    Google Scholar 

  • D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech., 41: 43–195, 2007.

    Article  Google Scholar 

  • D. A. Saville. Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech., 29:27–64, 1997.

    Article  MathSciNet  Google Scholar 

  • P. J. Schmid and D. S. Henningson. Stability and Transition in Shear Flows. Springer, 2001.

    Google Scholar 

  • A. Schmidt, M. Karas, and T. Dulcks. Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom., 14:492–500, 2003.

    Article  Google Scholar 

  • D. P. H. Smith. The electrohydodynamic atomization of liquids. IEEE Trans. Indus. Appl., IA-22:527–535, 1986.

    Article  Google Scholar 

  • H. A. Stone, A. D. Stroock,, and A. Ajdari. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech., 36:381–411, 2004.

    Article  Google Scholar 

  • G. I. Taylor. Disintegration of water drops in an electric field. Proc. R. Soc. London A, 280:383–397, 1964.

    Article  MATH  Google Scholar 

  • M. S. Wilm and M. Mann. Electrospray and Taylor-cone theory, Dole’s beam of macromolecules at last? Int. J. Mass Spectrom., 136:167–180, 1994.

    Article  Google Scholar 

  • S. Xu. Operating regimes of self-regulated electrohydrodynamic cone-jets. Master’s thesis, Duke University, 2010.

    Google Scholar 

  • O. Yogi, T. Kawakami, M. Yamauchi, J.Y. Ye, and M. Ishikawa. On-demand droplet spotter for preparing pico- to femtoliter droplets on surfaces. Anal. Chem., 73:1896–1902, 2001.

    Article  Google Scholar 

  • J. Zeng and T. Korsmeyer. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip, 4:265–277, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Chen, CH. (2011). Electrohydrodynamic Stability. In: Ramos, A. (eds) Electrokinetics and Electrohydrodynamics in Microsystems. CISM Courses and Lectures, vol 530. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0900-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0900-7_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0899-4

  • Online ISBN: 978-3-7091-0900-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics