Skip to main content

Part of the book series: CISM Courses and Lectures ((CISM,volume 530))

Abstract

The electrical manipulation of fluids in microsystems has many existing and potential applications. This chapter reviews five different ways of electrohydrodynamic actuation in microdevices. First, we describe the basic equations of Electrohydrodynamics in the microscale, providing some basic concepts of electrical conduction in liquids. We also deal with some basic fluid-mechanical aspects that are common for micropumps. Then, five different electrohydrodynamic micropumps are studied and compared: from those that employ forces in the liquid bulk to those that employ forces in the electrical double layer.

This work has been supported by the Spanish Government Ministry MEC (contract FIS2006-03645) and the Regional Government Junta de Andalucía (contract P09-FQM-4584).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • S.H. Ahn and Y.K. Kim. Fabrication and experiment of a planar micro ion drag pump. Sensors and Actuators A: Physical, 70:1–5, 1998.

    Article  Google Scholar 

  • A. Ajdari. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E, 61:R45–R48, 2000.

    Article  Google Scholar 

  • P. Atten and J. Seyed-Yagoobi. Electrohydrodynamically induced dielectric liquid flow through pure conduction in point/plane geometry. IEEE Trans. Dielectr. Electr. Insul., 10:27–36, 2003.

    Article  Google Scholar 

  • A.J. Bard and L.R. Faulkner. Electrochemical Methods: Fundamentals and Applications, 2nd Edition. John Wiley and Sons, 2001.

    Google Scholar 

  • D.P. J. Barz, M.J. Vogel, and P.H. Steen. Determination of the Zeta Potential of Porous Substrates by Droplet Deflection: II. Generation of Electrokinetic Flow in a Nonpolar Liquid. Langmuir, 26:3126–3133, 2010.

    Article  Google Scholar 

  • M.Z. Bazant and Y. Ben. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip, 6:1455–1461, 2006.

    Article  Google Scholar 

  • M.Z. Bazant and T.M. Squires. Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett., 92:066101, 2004.

    Article  Google Scholar 

  • M.Z. Bazant, M.S. Kilic, B.D. Storey, and A. Ajdari. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Advances in Colloid and Interface Science, 152: 48–88, 2009.

    Article  Google Scholar 

  • A.B.D. Brown, C.G. Smith, and A.R. Rennie. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys. Rev. E, 63:016305, 2001.

    Article  Google Scholar 

  • B.P. Cahill, L.J. Heyderman, J. Gobrecht, and A. Stemmer. Electro-osmotic streaming on application of traveling-wave electric fields. Phys. Rev. E, 70:036305, 2004.

    Article  Google Scholar 

  • A. Castellanos. Basic concepts and equations in electrohydrodynamics. In A. Castellanos, editor, Electrohydrodynamics. Springer-Verlag, 1998.

    Google Scholar 

  • J.M. Crowley, G.S. Wright, and J.C. Chato. Selecting a working fluid to increase the efficiency and flow rate of an EHD pump. IEEE Trans. Ind. Appl., 26:42–49, 1990.

    Article  Google Scholar 

  • J. Darabi and C. Rhodes. CFD modeling of an ion-drag micropump. Sensors and Actuators A, 127:94–103, 2006.

    Article  Google Scholar 

  • J. Darabi and H. Wang. Development of an electrohydrodynamic injection micropump and its potential application in pumping fluids in cryogenic cooling systems. J. Microelectromech. Syst., 14:747–755, 2005.

    Article  Google Scholar 

  • J. Darabi, M. Rada, M. Ohadi, and J. Lawler. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J. Microelectromech. Syst., 11:684–690, 2002.

    Article  Google Scholar 

  • P.K. Dasgupta and S. Liu. Electroosmosis: a reliable fluid propulsion system for flow injection analysis. Anal. Chem., 66:1792–1798, 1994.

    Article  Google Scholar 

  • P.S. Dittrich and P. Schwille. An Integrated Microfluidic System for Reaction, High-Sensitivity Detection, and Sorting of Fluorescent Cells and Particles. Anal. Chem., 75:5767–5774, 2003.

    Article  Google Scholar 

  • M. Felten, P. Geggier, M. Jäger, and C. Duschl. Controlling electrohydrodynamic pumping in microchannels through defined temperature fields. Phys. Fluids, 18:051707, 2006.

    Article  Google Scholar 

  • Y. Feng and J. Seyed-Yagoobi. Understanding of electrohydrodynamic conduction pumping phenomenon. Phys. Fluids, 16:2432–2441, 2004.

    Article  Google Scholar 

  • P. Foroughi, V. Benetis, M. Ohadi, Y. Zhao, and J. Lawler. Design, testing and optimization of a micropump for cryogenic spot cooling applications. In Proceedings of Semiconductor Thermal Measurement and Management Symposium, pages 335–340, 2005.

    Google Scholar 

  • G. Fuhr, R. Hagedorn, T. Müller, W. Benecke, and B. Wagner. Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J. Microelectromech. Syst., 1:27–36, 1992.

    Google Scholar 

  • G. Fuhr, T. Schnelle, and B. Wagner. Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids. J. Micromech. Microeng., 4:217–226, 1994.

    Article  Google Scholar 

  • P. García-Sánchez and A. Ramos. The effect of electrode height on the performance of travelling-wave electroosmotic micropumps. Microfluidics Nanofluidics, 5:307–312, 2008.

    Article  Google Scholar 

  • P. García-Sánchez, A. Ramos, N.G. Green, and H. Morgan. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans. Dielectr. Electr. Insul., 13:670–677, 2006.

    Article  Google Scholar 

  • P. García-Sánchez, A. Ramos, N.G. Green, and H. Morgan. Traveling-Wave Electrokinetic Micropumps: Velocity, Electrical Current, and Impedance Measurements. Langmuir, 24:9361–9369, 2008.

    Article  Google Scholar 

  • A. González, A. Ramos, N.G. Green, A. Castellanos, and H. Morgan. Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes II: A linear double-layer analysis. Phys. Rev. E, 61:4019–4028, 2000.

    Article  Google Scholar 

  • A. González, A. Ramos, A. Castellanos, N.G. Green, and H. Morgan. Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech., 564:415–433, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • N.G. Green, A. Ramos, A. González, A. Castellanos, and H. Morgan. Electric field induced fluid flow on microelectrodes: the effect of illumination. J. Phys. D: Appl. Phys., 33:L13–L17, 2000a.

    Article  Google Scholar 

  • N.G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos. Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes I: Experimental measurements. Phys. Rev. E, 61:4011–4018, 2000b.

    Article  Google Scholar 

  • N.G. Green, A. Ramos, A. González, H. Morgan, and A. Castellanos. Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes III: Observation of streamlines and numerical simulations. Phys. Rev. E, 66:026305, 2002.

    Article  Google Scholar 

  • H.A. Haus and J.R. Melcher. Electromagnetic Fields and Energy. Prentice Hall, 1989.

    Google Scholar 

  • M. Holtappels, M. Stubbe, and J. Gimsa. ac-field-induced fluid pumping in microsystems with asymmetric temperature gradients. Phys. Rev. E, 79:026309, 2009.

    Article  Google Scholar 

  • C.C. Huang, M.Z. Bazant, and Todd Thorsen. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip, 10:80–85, 2010.

    Article  Google Scholar 

  • R.J. Hunter. Zeta Potential in Colloid Science. Academic Press, 1981.

    Google Scholar 

  • B.D. Iverson and S.V. Garimella. Experimental characterization of induction electrohydrodynamics for integrated microchannel pumping. J. Micromech. Microeng., 19:055015, 2009.

    Article  Google Scholar 

  • S.C. Jacobson, R. Hergenroder, L.B. Koutny, and J.M. Ramsey. Open-channel electrochromatography on a microchip. Anal. Chem., 66:2369–2373, 1994.

    Article  Google Scholar 

  • J. Jang and S.S. Lee. Theoretical and experimental study of mhd (magnetohydrodynamic) micropump. Sensors Actuators, 80:84–89, 2000.

    Article  Google Scholar 

  • S. Jeong and J. Seyed-Yagoobi. Experimental study of electrohydrodynamic pumping through conduction phenomenon. J. Electrostatics, 56:123–133, 2002.

    Article  Google Scholar 

  • S.I. Jeong and J. Seyed-Yagoobi. Innovative electrode designs for electrohydrodynamic conduction pumping. IEEE Trans. Ind. Appl., 40:900–904, 2004.

    Article  Google Scholar 

  • L.N. Jiang, J. Mikkelsen, J.M. Koo, D. Huber, S.H. Yao, L. Zhang, P. Zhou, J.G. Maveety, R. Prasher, J.G. Santiago, T.W. Kenny, and K.E. Goodson. Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Transactions on Components and Packaging Technologies, 25:347–355, 2002.

    Article  Google Scholar 

  • P.Z. Kazemi, P.R. Selvaganapathy, and C.Y. Ching. Electrohydrodynamic micropumps with asymmetric electrode geometries for microscale electronics cooling. IEEE Trans. Dielectr. Electr. Insul., 16:483–488, 2009.

    Article  Google Scholar 

  • M. Kosmulski and J.B. Rosenholm. High ionic strength electrokinetics. Advances in Colloid and Interface Science, 112:93–107, 2004.

    Article  Google Scholar 

  • P. Langevin. Recombinaison et mobilites des ions dans les gaz. Annales de Chimie et de Physique, 28:433, 1903.

    Google Scholar 

  • D.J. Laser and J.G. Santiago. A review of micropumps. J. Micromech. Microeng., 14:R35–R36, 2004.

    Article  Google Scholar 

  • J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.J. Kim. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors Actuators A, 95:259–268, 2002.

    Article  Google Scholar 

  • V.G. Levich. Physicochemical Hydrodynamics. Prentice-Hall, 1962.

    Google Scholar 

  • A. Manz, C.S. Effenhauser, N. Burggraf, D.J. Harrison, K. Seiler, and K. Fluri. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromech. Microeng., 4: 257–265, 1994.

    Article  Google Scholar 

  • J.R. Melcher. Traveling-wave induced electroconvection. Phys. Fluids, 9: 1548–1555, 1966.

    Article  Google Scholar 

  • J.R. Melcher and M.S. Firebaugh. Travelling-wave bulk electroconvection induced across a temperature gradient. Phys. Fluids, 10:1178–1185, 1967.

    Article  Google Scholar 

  • J.R. Melcher and G.I. Taylor. Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann. Rev. Fluid Mech., 1:111–146, 1969.

    Article  Google Scholar 

  • N.A. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp. Micropump based on electroosmosis of the second kind. Electrophoresis, 30:3499–3506, 2009.

    Article  Google Scholar 

  • H. Morgan, N.G. Green, A. Ramos, and P. Garcia-Sanchez. Control of two-phase flow in a microfluidic system using ac electric fields. Appl. Phys. Lett., 91:254107, 2007.

    Article  Google Scholar 

  • T. Müller, W.M. Arnold, T. Schnelle, R. Hagedorn, G. Fuhr, and U. Zimmermann. A traveling-wave micropump for aqueous solutions: Comparison of 1 g and μg results. Electrophoresis, 14:764–772, 1993.

    Article  Google Scholar 

  • L.H. Olesen, H. Bruus, and A. Ajdari. AC electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Phys. Rev. E, 73:056313, 2006.

    Article  Google Scholar 

  • M.R. Pearson and J. Seyed-Yagoobi. Experimental Study of EHD Conduction Pumping at the Micro-scale. In 2009 Electrostatics Joint Conference, 2009.

    Google Scholar 

  • W.F. Pickard. Ion Drag Pumping. I. Theory. J. Appl. Phys., 34:246–250, 1963a.

    Article  Google Scholar 

  • W.F. Pickard. Ion Drag Pumping. II. Experiment. J. Appl. Phys., 34: 251–258, 1963b.

    Article  Google Scholar 

  • F. Pontiga. Sobre la Estabilidad de una Capa de Líquido Sometida a un Campo Eléctrico y un Gradiente Térmico. PhD thesis, Universidad de Sevilla, 1992.

    Google Scholar 

  • V. Pretorius, B.J. Hopkins, and J.D. Schieke. Electro-osmosis: A new concept for high-speed liquid chromatography. J. Chromatography, 99:23–30, 1974.

    Article  Google Scholar 

  • A. Ramos, H. Morgan, N.G. Green, and A. Castellanos. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys., 31:2338–2353, 1998.

    Article  Google Scholar 

  • A. Ramos, H. Morgan, N.G. Green, and A. Castellanos. AC electric-field-induced fluid flow in microelectrodes. J. Colloid and Interface Science, 217:420–422, 1999.

    Article  Google Scholar 

  • A. Ramos, A. González, A. Castellanos, N.G. Green, and H. Morgan. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E, 67:056302, 2003.

    Article  Google Scholar 

  • A. Ramos, H. Morgan, N.G. Green, A. González, and A. Castellanos. Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys., 97: 084906, 2005.

    Article  Google Scholar 

  • C.L. Rice and R. Whitehead. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem., 69:4017–4024, 1965.

    Article  Google Scholar 

  • A. Richter and H. Sandmaier. An electrohydrodynamic micropump. In IEEE Proceedings of Micro Electro Mechanical Systems, 1990, pages 99–104, 1990.

    Google Scholar 

  • A. Richter, A. Plettner, K.A. Hofmann, and H. Sandmaier. Electrohydrodynamic pumping and flow measurement. In IEEE Proceedings of Micro Electro Mechanical Systems, 1991, pages 271–276, 1991.

    Google Scholar 

  • J.C. Ryu, H.J. Park, J.K. Park, and K.H. Kang. New Electrohydrodynamic Flow Caused by the Onsager Effect. Phys. Rev. Lett., 104:104502, 2010.

    Article  Google Scholar 

  • D.A. Saville. Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech., 29:27–64, 1997.

    Article  MathSciNet  Google Scholar 

  • W.F. Schmidt. Conduction mechanisms in liquids. In R. Bartnikas, editor, Electrical Insulating Liquids. Engineering Dielectrics, Vol III. ASTM International, 1994.

    Google Scholar 

  • J. Seyed-Yagoobi. Electrohydrodynamic pumping of dielectric liquids. J. Electrostatics, 63:861-869, 2005.

    Article  Google Scholar 

  • M. Sigurdson, D. Wang, and C.D. Meinhart. Electrothermal stirring for heterogeneous immunoassays. Lab Chip, 5:1366–1373, 2005.

    Article  Google Scholar 

  • H.A. Stone, A.D. Stroock, and A. Ajdari. Engineering flows in small devices: Microfluidics toward a Lab-on-a-Chip. Annu. Rev. Fluid Mech., 36:381–411, 2004.

    Article  Google Scholar 

  • J.A. Stratton. Electromagnetic Theory. McGraw Hill, 1941.

    Google Scholar 

  • M. Stubbe, M. Holtappels, and J. Gimsa. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D: Appl. Phys., 40:6850–6856, 2007.

    Article  Google Scholar 

  • V. Studer, A. Pepin, Y. Chen, and A. Ajdari. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst, 129:944–949, 2004.

    Article  Google Scholar 

  • O.M. Stuetzer. Instability of Certain Electrohydrodynamic Systems. Phys. Fluids, 2:642–648, 1959.

    Article  MathSciNet  Google Scholar 

  • O.M. Stuetzer. Ion Drag Pumps. J. Appl. Phys., 31:136–146, 1960.

    Article  Google Scholar 

  • Y. Takamura, H. Onoda, H. Inokuchi, S. Adachi, A. Oki, and A. Horiike. Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis, 24:185–192, 2003.

    Article  Google Scholar 

  • J.J Thomson and G.P. Thomson. Conduction of Electricity Through Gases, 3rd ed. University Press, 1928.

    Google Scholar 

  • P. Wang, Z.L. Chen, and H.C. Chang. A new electro-osmotic pump based on silica monoliths. Sensors Actuators B, 113:500–509, 2006.

    Article  Google Scholar 

  • J. Wu, M. Lian, and K. Yang. Micropumping of biofluids by alternating current electrothermal effects. Appl. Phys. Lett., 90:234103, 2007.

    Article  Google Scholar 

  • X. Xuan, B. Xu, D. Sinton, and D. Li. Electroosmotic flow with Joule heating effects. Lab Chip, 4:230–236, 2004.

    Article  Google Scholar 

  • H. Yang, H. Jiang, A. Ramos, and P. García Sánchez. AC electrokinetic pumping on symmetric electrode arrays. Microfluid Nanofluid, 7:767–772, 2009.

    Article  Google Scholar 

  • S.H. Yao and J.G. Santiago. Porous glass electroosmotic pumps: theory. J. Colloid Interface Sci., 268:133–142, 2003.

    Article  Google Scholar 

  • S.H. Yao, D.E. Hertzog, S.L. Zeng, J.C. Mikkelsen, and J.G. Santiago. Porous glass electroosmotic pumps: design and experiments. J. Colloid Interface Sci., 268:143–153, 2003.

    Article  Google Scholar 

  • A.I. Zhakin. Conduction phenomena in dielectric liquids. In A. Castellanos, editor, Electrohydrodynamics. Springer-Verlag, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Ramos, A. (2011). Electrohydrodynamic Pumping in Microsystems. In: Ramos, A. (eds) Electrokinetics and Electrohydrodynamics in Microsystems. CISM Courses and Lectures, vol 530. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0900-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0900-7_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0899-4

  • Online ISBN: 978-3-7091-0900-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics