Skip to main content

Cellulose and Other Polysaccharides Surface Properties and Their Characterisation

  • Chapter
  • First Online:
The European Polysaccharide Network of Excellence (EPNOE)

Abstract

This chapter presents comprehensive information about surface phenomena of cellulose and polysaccharide surfaces. It comprises the necessary description of cellulose moieties, of measuring methods and recent results of polysaccharides surface modification and characterisation.

The first part describes different cellulose moieties starting with model cellulose surfaces, allowing basic studies of interface phenomena at well-defined surfaces and provides general information and deepens the understanding of interaction processes. It is extended to nanocrystalline cellulose and further to technological cellulose products.

The importance of structural information as the degree of crystallinity and amorphous regions and the voids size is briefly mentioned in the second part. The state-of-the-art measurement methods providing information about the chemical surface composition, the surface structure and roughness are discussed. The possibilities to measure thickness of cellulose layers using optical and other methods are presented. Particular attention is given to those methods providing information about polysaccharide surface at the solid/liquid interface, the surface energy, the quantification of surface charge, the interaction ability and the quantitative determination of adsorbed mass. A presentation of molecular modelling methods shows the ability of computational chemistry to describe such complex systems. Molecular mechanics force field, semiempirical and ab initio methods are described.

In the third part, recent results of surface modification, their characterisation and interaction abilities are presented. This comprises cellulose nanocrystals and nanocompounds, the stabilising effect of polysaccharides and the creation of functional groups on technical and biocompatible cellulose materials. Finally, results of molecular dynamics simulations of the polysaccharide–water interface are presented estimated by semiempirical and ab initio methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Green Chem 8:784–786

    CAS  Google Scholar 

  • Abu-Lail NI, Camesano TA (2003) J Microsc 212:217–238

    PubMed  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Biomacromolecules 9:1273–1282

    PubMed  CAS  Google Scholar 

  • Albrecht W, Reintjes M, Wulfhorst B (1997) Chem Fibres Int 47:289–304

    Google Scholar 

  • Amado S, Simoes MJ, Armada da Silva PAS, Luıs AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejao ASP, Maurıcio AC, Geuna S, (2008) Biomaterials 29:4409–4419

    Google Scholar 

  • Andrade JR, Raphael E, Pawlicka A (2009) Electrochim Acta 54:6479–6483

    CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 142(1):75–82

    CAS  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Langmuir 25(13):7675–7685

    PubMed  CAS  Google Scholar 

  • Ausserre D, Valignat MP (2006) Nano Lett 6(7):1384–1388

    PubMed  CAS  Google Scholar 

  • Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB, Rappoport Z, Apeloig Y (2001) 2 Eds. In Chemistry of Organic Silicon Compounds; Zvi Rappoport and Yitzhak Apeloig, Eds.; Wiley: Chichester, UK

    Google Scholar 

  • Azizi S, Alloin F, Sanchez JY, Dufresne A (2004) Polymer 45: 4149–4157

    Google Scholar 

  • Barzyk D, Page DH, Ragauskas AJ (1997) Pulp Paper Sci 23: 520–528

    Google Scholar 

  • Baumann H, Faust V (2001) Carbohydr Res 331:43–57

    PubMed  CAS  Google Scholar 

  • Baumann H, Scheen H, Huppertz B, Keller R (1998) Carbohydr Res 308:381–388

    PubMed  CAS  Google Scholar 

  • Baumann H, Richter A, Klemm D, Faust V (2000) Macromol Chem Phys 201:1950–1962

    Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6(2):1048–1054

    PubMed  CAS  Google Scholar 

  • Belu AM, Graham DJ, Castner DG (2003) Biomaterials 24:3635–3653

    Google Scholar 

  • Berger W (1994) Chemiefasern/Textilindustrie 44/96:747–750

    Google Scholar 

  • Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) J Nanoparticle Res 11(7):1521–1554

    Google Scholar 

  • Berkert U, Allinger NL (1982) American Chemical Society Monograph, vol 177. Washington, DC

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Adv Drug Deliv Rev 60:1289–1306

    Google Scholar 

  • Biederman K, Sillen LG (1952) Arkiv Kemi 5:425–440

    Google Scholar 

  • Biermann CJ (1996) Handbook of Pulping and Papermaking. Academic Press, San Diego

    Google Scholar 

  • Breitwieser D, Spirk S, Fasl H, Stana-Kleinschek K, Ribitsch V (2012) 243rd American Chemical Society National Meetings and Exposition “Chemistry of Life”, San Diego, California, USA

    Google Scholar 

  • Brüger H (1994) Chemiefasern/Textilindustrie 44/96:701

    Google Scholar 

  • Čakara D, Fras Zemljič L, Bračič M, Stana-Kleinschek K (2009) Carbohydr Polym 78(1):36–40

    Google Scholar 

  • Capadona JR, van den Berg O, Capadona LA, Schroeter M, Rohan SJ, Tyler DJ, Weder C (2007) Nat Nanotechnol 2:765–769

    Google Scholar 

  • Chan CM (1994) Polymer surface modification and characterization. Carl Hanser Verlag, Münich, Germany

    Google Scholar 

  • Chem JH, Liu QL, Zhan XH, Zhang QG (2007) J Membr Sci 282:125–130

    Google Scholar 

  • Chen X, Schluesener HJ (2008) Toxicol Lett 176:1–12

    PubMed  CAS  Google Scholar 

  • Chensong P, Songyun X, Houjiang Z, Yu F, Mingliang Y, Hanfa Z (2007) Anal Bioanal Chem 387:193–204

    Google Scholar 

  • Choi Y, Simonsen J (2006) J Nanosci Nanotechnol 6:633–639

    PubMed  CAS  Google Scholar 

  • Ciavatta L (1963) Arkiv Kemi 20:417

    CAS  Google Scholar 

  • Clark T (1985) A handbook of computational chemistry. John Wiley and Sons, New York

    Google Scholar 

  • Cole DJ (1996) Lenzinger Berichte 75:45–48

    Google Scholar 

  • Cook G (1984) Handbook of textile fibres, man-made fibres, 5th edn. Merrow, Durham, pp 47–64

    Google Scholar 

  • Corriu RJP, Boury B, Rappoport Z, Apeloig Y (2001) In: Chemistry of organic silicon compounds; Zvi Rappoport and Yitzhak Apeloig, Eds.; Wiley: Chichester, UK

    Google Scholar 

  • Coseri S, Nistor G, Fras Zemljič L, Strnad S, Harabagiu V, Simionescu CB (2009) Biomacromolecules 10(8):2294–2299

    PubMed  CAS  Google Scholar 

  • Cranston ED, Gray DG (2008) Colloids Surf A – Physiochem Eng Asp 325:44–51

    Google Scholar 

  • Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York

    Google Scholar 

  • Doliška A, Willför S, Strnad S, Ribitsch V, Stana Kleinschek K, Eklund P, Xu C (2011) Holzforschung 66(2):149–154

    Google Scholar 

  • Doliška A, Strnad S, Stana J, Martinelli E, Ribitsch V, Stana Kleinschek K (2012) J Biomater Sci Polym Ed 23:697–714

    Google Scholar 

  • Donati I, Travan A, Pelillo C, Scarpa T, Coslovi A, Bonifacio A, Sergo V, Paoletti S (2009) Paoletti Biomacromolecules 10:210–213

    CAS  Google Scholar 

  • Dumitriu S (2002) Polymeric Biomater, 2nd ed., Revised and Expanded Marcel Dekker, Inc. New York, pp 1–213

    Google Scholar 

  • Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Tetrehdron Lett 49:7322–7324

    CAS  Google Scholar 

  • Edgar CD, Gray DG, (2003) Cellulose 10:299–306

    Google Scholar 

  • Einfeldt L, Petzold K, Günther W, Stein A, Kussler M, Klemm D (2001) Macromol Biosci 1(8):341–347

    Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Carbohydr Polym 80:779–782

    CAS  Google Scholar 

  • Eriksson M, Notley SM, Wågberg L (2007) Biomacromolecules 8:912–920

    Google Scholar 

  • Evanoff DD, Chumanov G (2005) Chem Phys Chem 6:1221–1231

    Google Scholar 

  • Faibrother F, Mastin HJ (1924) Chem Soc 75:2318–2331

    Google Scholar 

  • Fairbrother F, Mastin HJ (1924) Chem Soc 75:2318–2331

    Google Scholar 

  • Fasl H, Stana J, Stropnik D, Strnad S, Stana-Kleinschek K, Ribitsch V (2010) Biomacromolecules 11:377–381

    PubMed  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Macromolecules 28(18):6365–6367

    CAS  Google Scholar 

  • Ferraria M, Boufi S, Battaglini N, Botelho dR, ReiVilar M (2010) Langmuir 26:1996

    Google Scholar 

  • Filpponen I, (2009) Ph.D. Thesis, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Fink HP, Fanter D, Philipp B (1985) Acta Polym 36:1–8

    Google Scholar 

  • Fowkes FM (1962) J Phys Chem 66:382–382

    Google Scholar 

  • Fowkes FM (1964) Ind Eng Chem 56:40–52

    Google Scholar 

  • Fras Zemljič L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) J Appl Polym Sci Ed 92(5):3186–3195

    Google Scholar 

  • Fras Zemljič L, Stana-Kleinschek K, Ribitsch V, Sfiligoj-Smole M, Kreže T (2002) Lenzing Ber 81:80–88

    Google Scholar 

  • Fras Zemljič L, Johansson L, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Colloids Surf A Physicochem Eng Asp [Print ed.] 260(1/3):101–108

    Google Scholar 

  • Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2006a) Cellulose (Lond.) 13(6):655–663

    Google Scholar 

  • Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2006b) Lenzing Ber 85:68–76

    Google Scholar 

  • Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2008a) Cellulose (Lond.) 15(2):315–321

    Google Scholar 

  • Fras Zemljič L, Peršin Z, Stenius P, Stana-Kleinschek K (2008b) Cellulose (Lond.) 15(5):681–690

    Google Scholar 

  • Fras Zemljič L, Čakara D, Michaelis N, Heinze T, Stana-Kleinschek K (2011) Cellulose (Lond.) 18:33–43

    Google Scholar 

  • Gericke M, Liebert T, Heinze T (2009) Macromol Biosci 9:343–353

    PubMed  CAS  Google Scholar 

  • Gericke M, Doliška A, Stana J, Liebert T, Heinze T, Stana-Kleinschek K (2010) Macromol Biosci 11:549–556

    Google Scholar 

  • Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH: Weinheim, Germany

    Google Scholar 

  • Gran G (1950) Acta Chem Scand A4:97

    Google Scholar 

  • Gray DG, Weller M, Ulkem N, Lejeune A (2010) Cellulose 17:117–124

    Google Scholar 

  • Groth T, Wagenknecht W (2001) Biomaterials 22:2719–2729

    PubMed  CAS  Google Scholar 

  • Gruber M (1998) Ph.D. Dissertation. University of Stuttgart (Germany)

    Google Scholar 

  • Grunert M, Winter WT (2002) J Polym Environ 10(1):27–30

    Google Scholar 

  • Grunnert M, Winter WT (2000) Polym Mater Sci Eng 82:232

    Google Scholar 

  • Habibi Y, Foulon L, Aguie-Beghin V, Molinari M, Douillard RJ (2007) Colloids Interface Sci 316:388–397

    Google Scholar 

  • Habibi Y, Lucia LA, Rojas (2010) OJ Chem Rev 110:3479–3500

    Google Scholar 

  • Hanley SJ, Giasson J, Revol JF, Gray DG (1992) Polymer 33(21):4639–4642

    CAS  Google Scholar 

  • Hardy BJ, Sarko A (1993) J Comput Chem 14(7):848–857

    Google Scholar 

  • Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley and Sons, New York

    Google Scholar 

  • Heinze T, Daus S, Gericke M, Liebert T (2010) Semi-synthetic sulfated polysaccharides – promising materials for biomedical applications and supramolecular architecture l in “Polysaccharides: development, properties and applications” Nova Science Publishers, Inc., New York, USA

    Google Scholar 

  • Hermans PH, Weidinger A (1949) J Polym Sci 4:135–144

    Google Scholar 

  • Herrington TM, Petzold JC (1992) Colloids Surf 64:109–118

    Google Scholar 

  • Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J Claesson PJ (1997) Colloids Interface Sci 186:369–381

    Google Scholar 

  • Horvath AT, Horvath AE, Lindström T, Wågberg L (2008) Langmuir 24:10797–10806

    Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science, principles and applications. Academic Press, London, pp 6–9

    Google Scholar 

  • Hyperchem 7 release (2002) Hypercube Inc.

    Google Scholar 

  • Ibrahim MM, El-Zawawy WK, Nassar MA (2010) Carbohydr Polym 79(3):694–699

    CAS  Google Scholar 

  • Indest T, Laine J, Ribitsch V, Johansson LS, Stana-Kleinschek K, Strnad S (2008) Biomacromolecules 9:2207–2214

    Google Scholar 

  • Indest T, Laine J, Johansson LS, Stana-Kleinschek K, Strnad S, Dworczak R, Ribitsch V (2009) Biomacromolecules 10:630–637

    Google Scholar 

  • Jacobasch HJ, Bauböck GSchurz J (1985) Problems and results of zeta-potential measurements on fibers. Colloids Polym Sci 263(1):3–24

    Google Scholar 

  • Jianshe C (2007) Surface texture of foods: perception and characterization. Critical Reviews in Food Science and Nutrition 47:583–598

    Google Scholar 

  • Jun S-H, Lee E-J, Yook S-W, Kim H-E, Kim H-W, Koh Y-H (2010) Acta Biomater 6:302–307

    PubMed  CAS  Google Scholar 

  • Kaelble DH (1972) Physical chemistry of adhesion. Wiley Interscience, New York, USA

    Google Scholar 

  • Kälble DH (1969) Adhes J 1:102–123

    Google Scholar 

  • Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek, Ribitsch V (2012) Adv Funct Mater DOI:10.1002/adfm.201200607

    Google Scholar 

  • Katz S, Beatson RP (1984) Scallion AM Svensk. Papperstidning 87:48

    Google Scholar 

  • Kickelbick G (2006) Hybrid materials. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Kim CW, Kim DS, Kang SY, Marqueze M, Joo YL (2006) Polymer 47:5097–5107

    Google Scholar 

  • Klemencic D, Simoncic B, Tomsic B, Orel B (2010) Carbohydr Polym 80(2):426–435

    Google Scholar 

  • Klemm D, Philipp B, Heinze T, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1, fundamentals and analytical methods. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

    CAS  Google Scholar 

  • Kocher T, Langenbeck N, Rosin M, Bernhardt O (2002) Methodology of three-dimensional determination of root surface roughness. J Periodont R 37:125–131

    Google Scholar 

  • Kontturi E, Österberg M, Tammelin T (2006) Chem Soc Rev 35:1287–1304

    PubMed  CAS  Google Scholar 

  • Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Langmuir 19:5735–5741

    CAS  Google Scholar 

  • Krässig HA (1993) Cellulose, structure, accessibility and reactivity. Gordon and Breach Science Publishers, Y-Parc, Switzerland

    Google Scholar 

  • Krässig HA (1996) Cellulose – structure, accessibility and reactivity. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Kreže T (2005) Mater Res Innov 9(1):108–129

    Google Scholar 

  • Kreze T, Malej S, Veder K (2003) Tex Res J 73(8):675–684

    Google Scholar 

  • Kreze T, Strnad S, Stana-Kleinschek K, Ribitsch V (2001) Mat Res Innovat 4:107–114

    CAS  Google Scholar 

  • Kreze T, Jeler S, Strnad S (2002) Mat Res Innovat 5:277–283

    Google Scholar 

  • Krüger R (1994) Lenzinger Ber 74:49–52

    Google Scholar 

  • Kwok DY, Neumann AW (1999) Adv Colloid Interface Sci 81:167–249

    CAS  Google Scholar 

  • Laine J (1994) Surface properties of unbleached kraft pulp fibers, determined by different methods, Dissertation. Department of Forest Products Technology; Helsinki University of Technology, Espoo, Finland

    Google Scholar 

  • Laine J, Lindström T (2001) Das Papier 1:40–45

    Google Scholar 

  • Laine J, Stenius P (1997) Paperi Puu - Paper and Timber 79:257–266

    CAS  Google Scholar 

  • Laine J, Löfgren L, Stenius P, Sjöberg S (1994) Colloid Surf A 88:277–287

    CAS  Google Scholar 

  • Laine J, Buchert J, Viikari L, Stenius P (1996) Holzforschung 50:208–214

    CAS  Google Scholar 

  • Laine J, Lindström T, Glad-Nordnark G, Risinger G (2000) Nordic Pulp Paper Res J 17(1):50–56

    Google Scholar 

  • Liebert T (2010); Cellulose Solvents - Remarkable History, Bright Future; ACS: Washington DC, USA

    Google Scholar 

  • Liesene J (2009) Cellulose 17:167–172

    Google Scholar 

  • Lindgren J, Wiklund L, Öhman LO (2000) Nordic Pulp and Paper Res. J 15:18

    CAS  Google Scholar 

  • Lipkowitz KB, Boyd DB (1990) Eds., Reviews in computational chemistry. VCH Publishers, New York

    Google Scholar 

  • Liu Y-L, Su Y-H, Lai J-Y (2004) Polymer 45:6831–6837

    CAS  Google Scholar 

  • Liu J, Wang Q, Wang A (2007) Carbohydr Polym 70:166–173

    CAS  Google Scholar 

  • Lu P, Hsieh YL(2010) Carbohydr Polym 82:329–336

    Google Scholar 

  • MacArtain P, Jacquier JC, Dawson KA (2003) Carbohydr Polym 53:395–400

    Google Scholar 

  • Martinichen-Herrero JC, Carbonero ER, Sassaki GL, Gorin PAJ, Iacomini M (2005) Int J Biol Macromol 35:97–102

    Google Scholar 

  • Marx KA (2003) Biomacromolecules 4(5):1102–1120

    Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) In Cellulose Nanocomposites: Processing, Characterization, and Properties; Oksman, K., Sain, M., Eds.; ACS Symposium Series 938; American Chemical Society: Washington, DC

    Google Scholar 

  • Mesquita JP, Donnici LC, Pereira FV (2010) Biomacromolecules 11:473–480

    Google Scholar 

  • Mohan T, Kargl R, Doliška A, Vesel A, Ribitsch V, Stana-Kleinschek K (2011) J Colloid Interf Sci 358(2):604–610

    CAS  Google Scholar 

  • Mohan T, Spirk S, Kargl R, Doliška A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012a) Soft Matter 8:9807–9815

    Google Scholar 

  • Mohan T, Spirk S, Kargl R, Doliška A, Ehmann HMA, Köstler S, Ribitsch V, Stana-Kleinschek K (2012b) Colloids and Surfaces A:Physicochem Eng Aspects 400:67–72

    Google Scholar 

  • Morin A, Dufresne A (2002) Macromolecules 35:2190–2199

    CAS  Google Scholar 

  • Murray RW (2008) Chem. Rev. 108:2688–2720

    Google Scholar 

  • Muzzarelli RAA, Tanfani F, Emanuelli M (1984) Carbohydr Res 126:225–231

    PubMed  CAS  Google Scholar 

  • Myers D (1999) Surfaces, interfaces and colloids, John Wiley and Sons, New York

    Google Scholar 

  • Noorani S, Simonsen J, Atre S (2006) In Cellulose Nanocomposites: Processing, Characterization and Properties; Oksman K, Sain M, Eds.; ACS Symposium Series 938; American Chemical Society:Washington, D.C.

    Google Scholar 

  • Notley SM, Wågberg L (2005) Biomacromolecules 6:1586–1591

    Google Scholar 

  • Notley SM, Eriksson M, Wågberg L, Beck S, Gray DG, (2006) Langmuir 22:3154–3160

    Google Scholar 

  • Owens DK, (1969) J Appl Polym Sci. 13:1741–1747

    Google Scholar 

  • Park S, Venditi RA, Jameel H, Pawlak JJ Park S et al (2006) Carbohydr Polym 66:97–103

    CAS  Google Scholar 

  • Park W-I, Kang M, Kim H-S, Jin H-J (2007) Macromol Symp 249–250:289–294

    Google Scholar 

  • Pecse A, Jordane AA, Carluci G, Cintio A (2005) Articles comprising cationic polysaccharides and acidic pH buffering means. US Patent Application Publication: 0124799 A1

    Google Scholar 

  • Penfold J, Tucker I, Petkov J, Thomas RK (2007) Langmuir 23:8357–8364

    Google Scholar 

  • Peršin Z Stana-Kleinschek K, Sfiligoj-Smole M, Tatjana K (2004) Tex Res J 74(1):55–62

    Google Scholar 

  • Pires L, Gorin PAJ, Reicher F, Sierakowski MR (2001) Carbohydr Polym 46:165–169

    CAS  Google Scholar 

  • Rabel W (1977) Physkalische Blätter 33:151–161

    CAS  Google Scholar 

  • Rangelova N, Chernev G, Nenkova S, Samuneva B, Georgieva N, Yotova L, Radev L, Salvado IMM (2008) Nanoscience & Nanotechnology 8:246–249

    Google Scholar 

  • Räsänen E, Kärkkäinen L, Tervola P, Gullichsen J, Stenius P, Vuorinen T (2001a) Grenoble Workshop on Advanced Methods for Lignocellulosics and Paper Products Characterization, P June 18–19. Grenoble, France

    Google Scholar 

  • Räsänen E, Stenius P, Tervola P (2001b) Nordic Pulp and Paper Res. J 16:130–139

    Google Scholar 

  • Reimhulta K, Yoshimatsub K, Risvedenb K, Chena S, Yeb L, Krozer A (2003) Biomacromolecules 4(5):1103

    Google Scholar 

  • Reischl M, Stana-Kleinschek K, Ribitsch V (2006) Mater Sci Forum 514–516:1374–1378

    Google Scholar 

  • Ribitsch V, Stana-Kleinschek K, Tatjana K, Strnad S (2001) Macromol Mater Eng 286(10):648

    CAS  Google Scholar 

  • Roman M (2009) Model cellulosic surface. ACS, Washington, DC, pp 115–136

    Google Scholar 

  • Rossetti FF, Panagiotou P, Rehfeldt F, Schneck E, Dommach M, Funari SS, Timmann A, Müller-Buschbaum P, Tanaka M (2008) Biointerphases 3:117–127

    PubMed  CAS  Google Scholar 

  • Ruland W (1961) Acta Crystallogr 14:1180–1195

    CAS  Google Scholar 

  • Saarinen T, Österberg M, Laine J (2008) Colloids Surf A – Physiochem Eng Asp 330: 134–142

    Google Scholar 

  • Samuneva B, Djambaski P, Kashchieva E, Chernev G, Kabaivanova L, Emanuilova E, Salvado IMM, Fernandes MHV, Wu AJ (2008) Non-Cryst. Solids 354:733–740

    CAS  Google Scholar 

  • Sax AF (2008) Monatsh Chem 139:299–308

    CAS  Google Scholar 

  • Sauerbrey G (1959) Z Phys 155:206–222

    Google Scholar 

  • Scallan AM, Katz S (1989) Cellulose and wood chemistry and technology. John Wiley, New York, NY

    Google Scholar 

  • Schaub M, Wenz G, Wegner G, Stein A, Klemm D (1993) Adv Mater 5:919–921

    CAS  Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) Cellulose 12:223–231

    CAS  Google Scholar 

  • Schrand M, Braydich-Stolle LK, Schlager JJ, Dai L, Hussain SM (2008) Nanotechnology 19(23):1–13

    Google Scholar 

  • Schuldt U, Philipp B, Klemm D, Stein A, Jancke H, Nehls I (1994) Papier 48:3–17

    CAS  Google Scholar 

  • Schurz J (1994) Lenzinger Berichte 74:37–40

    CAS  Google Scholar 

  • Sczech R, Riegler HJ (2006) J Colloid Interface Sci 301:376–385

    CAS  Google Scholar 

  • Sfiligoj-Smole M et al (2003) Mater Res Innov 7(5):275–282

    CAS  Google Scholar 

  • Shchipunov YA, Karpenko TY (2004) Langmuir 20:3882–3887

    PubMed  CAS  Google Scholar 

  • Shchipunov YA, Karpenko TY, Krekoten AV (2005) Compos Interf 11:587–607

    CAS  Google Scholar 

  • Shchipunov YA, Kojima A (2005) Imaeb T. J Colloid Interf Sci 285:574–580

    CAS  Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH (2009) Acta Biomat 5:346–355

    CAS  Google Scholar 

  • Sjöström E, Enström B (1966) Svensk Papperstidning 69:55

    Google Scholar 

  • Smitha S, Shajesh P, Mukundan P (2008) Warrier KGK. J Mater Res 23:2053–2060

    CAS  Google Scholar 

  • Smulochowski M (1903) Bull Intern Acad Sci Cracovie 184

    Google Scholar 

  • Souplet V, Desmet R, Melnyk O (2007) J Peptides Sci 13–7:451–457

    Google Scholar 

  • Spirk S, Ehmann HMA, Ribitsch V, Stana-Kleinschek K, (2011) In proceedings of the 15th International electronic conference on synthetic organic chemistry, Sciforum electronic conference series

    Google Scholar 

  • Spirk S, Findenig G, Doliška A, Reischel VE, Swanson NL, Kargl R, Ribitsch V, Stana-Kleinschek K (2012) Carbohydr Polym, DOI:10.1016/j.carbpol.2012.04.030

    Google Scholar 

  • Spirk S, Ehmann HMA, Kargl R, Hurkes N, Reischl M, Novak J, Resel R, Ming W, Pietschnig R, Ribitsch V (2010) ACS Appl Mater Interfaces 2(10):1412–1424

    Google Scholar 

  • Stana-Kleinschek K (2002) Mater Res Innov 6(1):13–18

    CAS  Google Scholar 

  • Stana-Kleinschek K et al. (1999) Polym. Eng. Sci. 39(8):1412–1424

    Google Scholar 

  • Stana-Kleinschek K, Ribitsch V (1998) Colloids surf., A Physicochem. eng. asp. [Print ed.] 140:127–138

    Google Scholar 

  • Stana-Kleinschek K, Ribitsch V, Tatjana K, Sfiligoj-Smole M, Peršin Z (2003) Lenzing Ber 82:83–95

    Google Scholar 

  • Sterling TB (2007) Laboratory Hemostasis – A Practical Guide for Pathologists. Springer Science

    Google Scholar 

  • Stewart JJP (1990) MOPAC: A Semiempirical Molecular Orbital Program. J Computer-Aided Molecular Design 4:1–105

    Google Scholar 

  • Strnad S, Šauperl O, Jazbec A, Stana-Kleinschek K (2008) Tex. Res. J. 78(5):390–398

    Google Scholar 

  • Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Chem. Rev. 110:389–458

    Google Scholar 

  • Tammelin T, Saarinen T, Österberg M, Laine J (2006) Cellulose 13:519–535

    CAS  Google Scholar 

  • Tanaka M, Wong AP, Rehfeldt F, Tutus M, Kaufmann SJ (2004) Am. Chem. Soc. 126:3257–3260

    Google Scholar 

  • Twu Y-K, Chen Y-W, Shih C-M (2008) Powder Technology 185. Issue 3:251–257

    Google Scholar 

  • Usuda M, Suzuki O, Nakano J, Migita N (1967) Kogyo Kagaku Zasshi 70:349–352

    CAS  Google Scholar 

  • Valles C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud (2008) J Am Chem Soc 130–47:5802–5811

    Google Scholar 

  • van Oss CJ (1993) Colloids Surf A Phys Chem Eng Asp. 78:1–49

    Google Scholar 

  • van Oss CJ, Chaudhury MK, Good RJ (1986) J Colloid. Interface Sci 111:378–390

    Google Scholar 

  • van Oss CJ, Chaudhury MK, Good RJ (1988) Langmuir 4:884–891

    Google Scholar 

  • Van Riessen A, Winton GH, Ohyi H, Yoshida M (1994) Micron. 25, 6:511–517

    Google Scholar 

  • Vongchan P, Sajomsang W, Subyen D, Kongtawelert P (2002) Carbohydr Res 337:1239–1242

    PubMed  CAS  Google Scholar 

  • Wågberg L, Ödberg L, Glad-Nordmark G (1989) Nord Pulp Pap Res J 4(2):71–76

    Google Scholar 

  • Waltz JE, Taylor GB (1947) Ana.l Chem. 19:448–450

    Google Scholar 

  • Washburn EW (1921) Phys.Rev. 17(3):273–283

    Google Scholar 

  • Wegner G, Buchholz V, Ödberg L, Stemme S (1996) Adv Mater 8:399–402

    Google Scholar 

  • Wolf S, Mobüs BZ (1962) Anal Chemie 86:194

    Google Scholar 

  • Wolfrom ML, Shen Han TM (1959) J Am Chem Soc 81:1764–1766

    Google Scholar 

  • Young DC (2001) Computational chemistry: A practical guide for applying techniques to real-world problems. John Wiley and Sons, New York, USA

    Google Scholar 

  • Zaera F (2012) Chem Rev 112:2920–2986

    Google Scholar 

  • Zhang Y, Sjögren B, Engstrand P, Htun MJ (1994) Wood Chem Techn. 14:83–102

    Google Scholar 

  • Zhou Q, Baumann MJ, Brumer H, Teeri T (2006) Carbohydr Polym 63:449–458

    Google Scholar 

  • Zisman WA (1964) In: Fowkes FM (ed). Contact angle, wettability and adhesion. Washington, DC, USA: American Chemical Society pp 1–51

    Google Scholar 

  • Zuwei M, Zhengwei M, Changyou G (2007) Colloids Surf., B 60:137–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Stana-Kleinschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Stana-Kleinschek, K. et al. (2012). Cellulose and Other Polysaccharides Surface Properties and Their Characterisation. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_8

Download citation

Publish with us

Policies and ethics