Skip to main content

Electron Subbands in Thin Silicon Films

  • Chapter
  • First Online:
Strain-Induced Effects in Advanced MOSFETs

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

Strain and hybrid orientation techniques are among the most important concepts to increase the performance of modern MOSFETs. The reason for the mobility enhancement lies in the band structure modification caused by stress. Multi-gate FinFETs and ultra-thin silicon body-based Silicon-On-Insulator (SOI) FETs are considered as perfect candidates for the 22nm technology node and beyond. Modification of the subband structure of inversion channels is the reason for improved transport characteristics of strained devices. Strong size quantization leads to a formation of quasi-two-dimensional subbands in carrier systems within thin silicon films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rideau, D., Feraille, M., Michaillat, M., Niquet, Y.M., Tavernier, C., Jaouen, H.: On the validity of the effective mass approximation and the Luttinger k⋅p model in fully depleted SOI MOSFETs. Solid State Electron. 53(4), 452–461 (2009)

    Article  Google Scholar 

  2. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54(2), 437–672 (1982)

    Article  Google Scholar 

  3. Baumgartner, O., Karner, M., Sverdlov, V., Kosina, H.: Electron subband structure in strained silicon UTB films from the Hensel-Hasegawa-Nakayama model: Part 2 efficient self-consistent numerical solution of the k⋅p Schrödinger equation. Solid State Electron. 54(2), 143–148 (2010)

    Article  Google Scholar 

  4. Bir, G.L., Pikus, G.E.: Symmetry and strain-induced effects in semiconductors. Willey, NewYork - Toronto (1974)

    Google Scholar 

  5. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective-mass expressions in the sp 3 d 5 s ∗ empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 69(11), 115201 (2004)

    Article  Google Scholar 

  6. Chen, J., Saraya, T., Hiramoto, T.: Experimental study on uniaxially stressed gate-all-around silicon nanowires nMOSFETs on (110) silicon-on-insulator. In: Semiconductor Device Research Symposium, 2009. ISDRS ’09. International, pp. 1–2 (2009)

    Google Scholar 

  7. Esseni, D., Palestri, P.: Fullbandbulk quantization analysis reveals a third valley in (001) silicon invesrion layers. IEEE Electron Device Lett. 24(5), 353–355 (2005)

    Google Scholar 

  8. Esseni, D., Palestri, P.: Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices. Phys. Rev. B 72(16), 165342 (2005)

    Article  Google Scholar 

  9. Foreman, B.A.: First-principles envelope-function theory for lattice-matched semiconductor heterostructures. Phys. Rev. B 72(16), 165345 (2005)

    Article  Google Scholar 

  10. Fowler, A.B., Fang, F.F., Howard, W.E., Stiles, P.J.: Magneto-oscillatory conductance in silicon surfaces. Phys. Rev. Lett. 16(20), 901–903 (1966)

    Article  Google Scholar 

  11. Friesen, M., Chutia, S., Tahan, C., Coppersmith, S.N.: Valley splitting theory of SiGe/Si/SiGe quantum wells. Phys. Rev. B 75(11), 115318 (2007)

    Article  Google Scholar 

  12. Goswami, S., Slinker, K.A., Friesen, M., McGuire, L.M., Truitt, J.L., Tahan, C., Klein, L.J., Chu, J.O., Mooney, P.M., vander Weide, D.W., Joynt, R., Coppersmith, S.N., Eriksson, M.A., Orellana, P.: Controllable valley splitting in silicon quantum devices. Nat. Phys. 3(8), 41–45 (2007)

    Article  Google Scholar 

  13. Hensel, J.C., Hasegawa, H., Nakayama, M.: Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys. Rev. 138(1A), A225–A238 (1965)

    Google Scholar 

  14. Khrapai, V.S., Shashkin, A.A., Dolgopolov, V.T.: Strong enhancement of the valley splitting in a two-dimensional electron system in silicon. Phys. Rev. B 67(11), 113305 (2003)

    Article  Google Scholar 

  15. Lai, K., Pan, W., Tsui, D.C., Lyon, S., Mühlberger, M., Schäffler, F.: Two-flux composite fermion series of the fractional quantum hall states in strained Si. Phys. Rev. Lett. 93(15), 156805 (2004)

    Article  Google Scholar 

  16. Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4), 869–883 (1955)

    Article  MATH  Google Scholar 

  17. Martinez, A., Kalna, K., Sushko, P., Shluger, A., Barker, J., Asenov, A.: Impact of body-thickness-dependent band structure on scaling of double-gate MOSFETs: A DFT/NEGF study. Nanotechnology, IEEE Transactions 8(2), 159–166 (2009)

    Article  Google Scholar 

  18. Ohkawa, F.J., Uemura, Y.: Theory of valley splitting in an n-channel (100) inversion layer of Si: I. Formulation by extended zone effective mass theory. J. Physical Soc. Japan 43(3), 907–916 (1977)

    Google Scholar 

  19. Ohkawa, F.J., Uemura, Y.: Theory of valley splitting in an n-channel (100) inversion layer of Si: II. Electric break through. J. Physical Soc. Japan 43(3), 917–924 (1977)

    Article  Google Scholar 

  20. Rideau, D., Feraille, M., Ciampolini, L., Minondo, M., Tavernier, C., Jaouen, H., Ghetti, A.: Strained Si, Ge, and Si1−x Ge x alloys modeled with a first-principles-optimized full-zone k ⋅p method. Phys. Rev. B 74(19), 195208 (2006)

    Article  Google Scholar 

  21. Rieger, M.M., Vogl, P.: Electronic-band parameters in strained Si1−x Ge x alloys on Si1−y Ge y substrates. Phys. Rev. B 48(19), 14,276–14,287 (1993)

    Google Scholar 

  22. Sham, L.J., Nakayama, M.: Effective-mass approximation in the presence of an interface. Phys. Rev. B 20(2), 734–747 (1979)

    Article  Google Scholar 

  23. vander Steen, J.L., Esseni, D., Palestri, P., Selmi, L., Hueting, R.: Validity of the parabolic effective mass approximation in silicon and germanium n-MOSFETs with different crystal orientations. IEEE Trans. Electron Devices 54(8), 1843–1851 (2007)

    Article  Google Scholar 

  24. Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163(3), 816–835 (1967)

    Article  Google Scholar 

  25. Sverdlov, V., Baumgartner, O., Selberherr, S.: Subband parameters in strained (110) silicon films from the Hensel-Hasegawa-Nakayama model of the conduction band. In: Semiconductor Device Research Symposium, 2009. ISDRS ’09. International, pp. 1–2 (2009)

    Google Scholar 

  26. Sverdlov, V., Baumgartner, O., Windbacher, T., Schanovsky, F., Selberherr, S.: Thickness dependence of the effective masses in a strained thin silicon film. In: Proceeings of International Conference on Simulation of Semiconductor Processes and Devices, pp. 1–4 (2009)

    Google Scholar 

  27. Sverdlov, V., Karlowatz, G., Dhar, S., Kosina, H., Selberherr, S.: Two-band k ⋅p model for the conduction band in silicon: Impact of strain and confinement on band structure and mobility. Solid State Electron. 52, 1563–1568 (2008)

    Article  Google Scholar 

  28. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Effects of shear strain on the conduction band in silicon: An efficient two-band k ⋅p theory. In: Proceedings of European Solid-State Device Research Conference, pp. 386–389 (2007)

    Google Scholar 

  29. Sverdlov, V., Ungersboeck, E., Kosina, H., Selberherr, S.: Current transport models for nanoscale semiconductor devices. Mater. Sci. Eng. R 58(6–7), 228–270 (2008)

    Article  Google Scholar 

  30. Sverdlov, V.A., Selberherr, S.: Electron subband structure and controlled valley splitting in silicon thin-body SOI FETs: Two-band k ⋅p theory and beyond. Solid State Electron. 52(12), 1861–1866 (2008)

    Article  Google Scholar 

  31. Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y., Hirayama, Y.: Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96(23), 236801 (2006) DOI10. 1103/PhysRevLett.96.236801

    Article  Google Scholar 

  32. Uchida, K., Kinoshita, A., Saitoh, M.: Carrier transport in (110) nMOSFETs: Subband structure, non-parabolicity, mobility characteristics, and uniaxial stress engineering. In: International Electron Devices Meeting, pp. 1019–1021 (2006)

    Google Scholar 

  33. Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: International Electron Devices Meeting, pp. 129–132 (2005)

    Google Scholar 

  34. Ungersboeck, E., Dhar, S., Karlowatz, G., Sverdlov, V., Kosina, H., Selberherr, S.: The effect of general strain on band structure and electron mobility of silicon. IEEE Trans. Electron Devices 54(9), 2183–2190 (2007)

    Article  Google Scholar 

  35. VASP: Vienna Ab-initio Simulation Program. Kresse, G., Hafner, J.: Phys. Rev. B 47(558), (1993); ibid. B 49(14251), (1994); Kresse, G., Fertmueller, J.: Phys. Rev. B 54(11169), (1996); Computs. Mat. Sci. 6(15), (1996)

    Google Scholar 

  36. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., vander Marel, D., Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60(9), 848–850 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Sverdlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sverdlov, V. (2011). Electron Subbands in Thin Silicon Films. In: Strain-Induced Effects in Advanced MOSFETs. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0382-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0382-1_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0381-4

  • Online ISBN: 978-3-7091-0382-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics