Skip to main content

Effect of a Free Radical Scavenger, Edaravone, on Free Radical Reactions: Related Signal Transduction and Cerebral Vasospasm in the Rabbit Subarachnoid Hemorrhage Model

  • Conference paper
Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/2))

Abstract

Objective: It is hypothesized that free radical reactions evoked by oxyhemoglobin (oxyHb) cause cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH), even though the detailed mechanisms have not yet been fully established. The aims of this study were thus to investigate, through the use of the double-hemorrhage rabbit model, the possibility that free radical reactions play a role in cerebral vasospasm and to delineate the mechanism of signal transduction that causes cerebral vasospasm.

Methods: In the SAH group, SAH was simulated using the double-hemorrhage rabbit model. In the treatment group, edaravone (0.6 mg/kg), a potent free radical scavenger, was injected into the central ear vein twice a day. Four days after SAH, the basilar artery was excised. The degree of cerebral vasospasm was evaluated by measuring the diameter of each basilar artery, and the expression of Rho-kinase in the vascular wall was examined by western blotting.

Results: The diameter of the basilar artery in the edaravone-treated group was 0.64 ± 0.06 mm, which was statistically significantly larger than that in the nontreated SAH group (0.50 ± 0.03 mm; p < 0.01). The expression of Rho-kinase in the edaravone-treated group was statistically significantly reduced in comparison to that of the nontreated SAH group.

Conclusion: Results from this study have indicated for the first time that free radical reactions mediated by oxyHb may play an important role in the pathogenesis of cerebral vasospasm through the expression of Rho-kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho associated kinase (Rho-kinase). J Biol Chem. 1996;271:20246–9.

    Article  PubMed  CAS  Google Scholar 

  2. Arai T, Takeyama N, Tanaka T. Glutathione monoethyl ester and inhibition of the oxyhemoglobin-induced increase in cytosolic calcium in cultured smooth muscle cells. J Neurosurg. 1999;90:527–32.

    Article  PubMed  CAS  Google Scholar 

  3. Asano T, Sasaki T, Koide T, Takakura K, Sano K. Experimental evaluation of the beneficial effect of an antioxidant on cerebral vasospasm. Neurol Res. 1984;6:49–53.

    PubMed  CAS  Google Scholar 

  4. Baker KF, Zervas NT, Pile-Spellman J, Vacanti FX, Miller D. Angiographic evidence of basilar artery constriction in the rabbit: a new model of vasospasm. Surg Neurol. 1987;27:107–12.

    Article  PubMed  CAS  Google Scholar 

  5. Barber AA, Bernheim F. Lipid peroxidation: its measurement, occurrence, and significance in animal tissues. Adv Geront Res. 1976;2:355–403.

    Google Scholar 

  6. Betuing S, Daviaud D, Pages C, Bonnard E, Valet P, Lafontan M, et al. Gβγ-independent coupling of α2−adrenergic receptor to p21rhoA in preadipocytes. J Biol Chem. 1998;273:28700–7.

    Article  Google Scholar 

  7. Carrell RW, Winterbourn CC, Rachmilewitz EA. Activated oxgen and haemolysis. J Lipid Res. 1977;18:635–44.

    Google Scholar 

  8. Chrissobolis S, Sobey CG. Recent evidence for an involvement of rho-kinase in cerebral vascular disease. Stroke 2006;37:2174–80.

    Article  PubMed  CAS  Google Scholar 

  9. Echlin F. Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J Neurosurg. 1971;35:646–56.

    Article  PubMed  CAS  Google Scholar 

  10. Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986;201:291–5.

    Article  PubMed  CAS  Google Scholar 

  11. Handa Y, Kaneko M, Takeuchi H, Tsuchida A, Kobayashi H, Kubota T. Effect of an antioxidant, ebselen, on development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Surg Neurol. 2000;53:323–9.

    Article  PubMed  CAS  Google Scholar 

  12. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 1998;280:2112–4.

    Article  PubMed  CAS  Google Scholar 

  13. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93:767–75.

    Article  PubMed  CAS  Google Scholar 

  14. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.

    PubMed  CAS  Google Scholar 

  15. Kassell NF, Sasaki T, Colohan AR, Nazar G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1985;16:562–72.

    Article  PubMed  CAS  Google Scholar 

  16. Katoh H, Aoki J, Yamaguchi Y, Kitano Y, Ichikawa A, Negishi M. Constitutively active Gα12, Gα13 and Gαq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem. 1998;273:28700–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kellogg EW, III, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymatically generated superoxide and hydrogen peroxide. J Biol Chem. 1977;252:6721–8.

    PubMed  CAS  Google Scholar 

  18. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996;12:245–8.

    Article  Google Scholar 

  19. Kozasa T, Jiang X, Hart MJ, Stermweis PM, Singer WD, Gilman AG, et al. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 1998;280:2109–11.

    Article  PubMed  CAS  Google Scholar 

  20. Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab. 2001;21:887–906.

    Article  PubMed  CAS  Google Scholar 

  21. Leung T, Manser E, Tan L, Lim L. A novel serine threonine kinase binding the Ras-related RhoA GTPase which translocate the kinase to peripheral membranes. J Biol Chem. 1995;270:29051–4.

    Article  PubMed  CAS  Google Scholar 

  22. Macdonald RL, Weir BK. A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 1991;22:971–82.

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald RL, Weir BK. Cerebral vasospasm and free radicals. Free Radic Biol Med. 1994;16:633–43.

    Article  PubMed  CAS  Google Scholar 

  24. Macdonald RL, Weir BK, Young JD, Grace MG. Cytoskeletal and extracellular matrix proteins in cerebral arteries following subarachnoid hemorrhage in monkeys. J Neurosurg. 1992;76:81–90.

    Article  PubMed  CAS  Google Scholar 

  25. Matsui T, Asano T. Effects of new 21-aminosteroid tirilazad mesylate (U74006F) on chronic cerebral vasospasm in a “two-hemorrhage” model of beagle dogs. Neurosurgery. 1994;34:1035–9.

    Article  PubMed  CAS  Google Scholar 

  26. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for the small GTP binding protein Rho. EMBO J. 1996;15:2208–16.

    PubMed  CAS  Google Scholar 

  27. Matsui T, Kaizu H, Itoh S, Asano T. The role of active smooth-muscle contraction in the occurrence of chronic vasospasm in the canine two-hemorrhage model. J Neurosurg. 1994;80:276–82.

    Article  PubMed  CAS  Google Scholar 

  28. Matsui T, Sugawa M, Johshita H, Takuwa Y, Asano T. Activation of the protein kinase C-mediated contractile system in canine basilar artery undergoing chronic vasospasm. Stroke 1991;22:1183–7.

    Article  PubMed  CAS  Google Scholar 

  29. Matsui T, Takuwa Y, Johshita H, Yamashita K, Asano T. Possible role of protein kinase C-dependent smooth muscle contraction in the pathogenesis of chronic cerebral vasospasm. J Cereb Blood Flow Metab. 1991;11:143–9.

    Article  PubMed  CAS  Google Scholar 

  30. Matthew JM, Gustavo P, Federico GL, Quoc-Anh T, Pablo FR, Rafael JT, et al. Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 2006;58:945–51.

    Article  Google Scholar 

  31. Megyesi JF, Vollrath B, Cook DA, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery 2000;46:448–60.

    Article  PubMed  CAS  Google Scholar 

  32. Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972;247:6960–2.

    PubMed  CAS  Google Scholar 

  33. Nakajima T, Sasakuri Y, Yamashita M, Yamashita S. Morphological study on lipid peroxides in the atheromatous plaque in human. Kasankashishitu Kenkyu. 1991;5:13–7.

    Google Scholar 

  34. Sako M, Nishihara J, Ohta S, Wang J, Sakaki S. Role of protein kinase C in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1993;13:247–54.

    Article  PubMed  CAS  Google Scholar 

  35. Sasaki S, Kuwabara H, Ohta S. Biological defence mechanism in the pathogenesis of prolonged cerebral vasospasm in the patients with ruptured intracranial aneurysms. Stroke 1986;17:196–202.

    Article  Google Scholar 

  36. Sasaki S, Ohta S, Nakamura H. Free radical reaction and biological defence mechanism in the pathogenesis of prolonged vasospasm in experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1988;8:1–8.

    Article  Google Scholar 

  37. Sato M, Tani E, Fujikawa H, Kaibuchi K. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res. 2000;87:195–200.

    Article  PubMed  CAS  Google Scholar 

  38. Scherer EQ, Herzog M, Wangemann P. Endothelin-1-induced vasospasms of spiral modiolar artery are mediated by rho-kinase-induced Ca(2+) sensitization of contractile apparatus and reversed by calcitonin gene-related Peptide. Stroke 2000;33:2965–71.

    Article  Google Scholar 

  39. Seasholtz TM, Majumdar M, Brown JH. Rho as a mediation of G protein-coupled receptor signaling. Mol Pharmacol. 1999;55:949–56.

    PubMed  CAS  Google Scholar 

  40. Steele JA, Stockbridge N, Maljkovic G. Free radicals mediate actions of oxyhemoglobin on cerebrovascular smooth muscle cells. Circ Res. 1991;68:416–23.

    Article  PubMed  CAS  Google Scholar 

  41. Takuwa Y, Matsui T, Abe Y, Nagafuji T, Yamashita K, Asano T. Alterations in protein kinase C activity and membrane lipid metabolism in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1993;13:409–15.

    Article  PubMed  CAS  Google Scholar 

  42. The Edaravone Acute Brain Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction: randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15:222–9.

    Article  Google Scholar 

  43. Toshima Y, Satoh S, Ikegaki I, Asano T. A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke 2000;31:2245–50.

    Article  PubMed  CAS  Google Scholar 

  44. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke 2003;34:1497–500.

    Article  PubMed  CAS  Google Scholar 

  45. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;30:990–994.

    Article  Google Scholar 

  46. Vollmer DG, Hongo K, Ogawa H. A study of the effectiveness of the iron-chelating agent deferoxamine as vasospasm prophylaxis in a rabbit model of subarachnoid hemorrhage. Neurosurgery 1991;28:27–32.

    Article  PubMed  CAS  Google Scholar 

  47. Vollrath B, Cook D, Megyesi J, Findlay JM, Ohkuma H. Novel mechanism by which hemoglobin induces constriction of cerebral arteries. Eur J Pharmacol. 1998;361:311–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res. 2003;92:809–16.

    Article  PubMed  CAS  Google Scholar 

  49. Winterbourn CC, McGrath BM, Carrell RW. Reactions involving superoxide and normal and unstable haemoglobins. Biochem J. 1976;155:493–502.

    PubMed  CAS  Google Scholar 

  50. Zhang JH. Role of protein kinase C in cerebral vasospasm: past and future. Neurol Res. 2000;22:369–78.

    PubMed  Google Scholar 

  51. Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 2005;36:2220–5.

    Article  PubMed  CAS  Google Scholar 

  52. Zuccarello M, Marsch JT, Schmitt G, Woodward J, Anderson DK. Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg. 1989;71:98–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihito Shimamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Munakata, A., Ohkuma, H., Shimamura, N. (2011). Effect of a Free Radical Scavenger, Edaravone, on Free Radical Reactions: Related Signal Transduction and Cerebral Vasospasm in the Rabbit Subarachnoid Hemorrhage Model. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0356-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0356-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0355-5

  • Online ISBN: 978-3-7091-0356-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics