Skip to main content

Advances in Experimental Subarachnoid Hemorrhage

  • Conference paper
Early Brain Injury or Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 110/1))

Abstract

Subarachnoid hemorrhage (SAH) remains to be a devastating disease with high mortality and morbidity. Two major areas are becoming the focus of the research interest of SAH: these are cerebral vasospasm (CVS) and early brain injury (EBI). This mini review will provide a broad summary of the major advances in experimental SAH during the last 3 years. Treatments interfering with nitric oxide (NO)- or endothelin-pathways continue to show antispasmotic effects in experimental SAH. HIF 1 may play both a detrimental and beneficial role in the setting of SAH, depending on its activation stage. Inflammation and oxidative stress contribute to the pathophysiology of both CVS and EBI. Apoptosis, a major component of EBI after SAH, also underlie the etiology of CVS. Since we recognize now that CVS and EBI are the two major contributors to the significant mortality and morbidity associated with SAH, ongoing research will continue to elucidate the underlying pathophysiological pathways and treatment strategies targeting both CVS and EBI may be more successful and improve outcome of patients with SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansar S, Vikman P, Nielsen M, Edvinsson L. Cerebrovascular ETB, 5-HT1B, and AT1 receptor upregulation correlates with reduction in regional CBF after subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2007;293(6):H3750–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008;104:33–41.

    Article  PubMed  CAS  Google Scholar 

  3. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci. 2007;27:6320–32.

    Article  PubMed  CAS  Google Scholar 

  4. Barbosa MD, Arthur AS, Louis RH, MacDonald T, Polin RS, Gazak C, et al. The novel 5-lipoxygenase inhibitor ABT-761 attenuates cerebral vasospasm in a rabbit model of subarachnoid hemorrhage. Neurosurgery 2001;49:1205–12.

    PubMed  CAS  Google Scholar 

  5. Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 1995;26:1086–91.

    Article  PubMed  CAS  Google Scholar 

  6. Bowman G, Bonneau RH, Chinchilli VM, Tracey KJ, Cockroft KM. A novel inhibitor of inflammatory production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit Care. 2006;5(3):22209.

    Article  Google Scholar 

  7. Broderick JP, Brott TJ, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994;25:1342–7.

    Article  PubMed  CAS  Google Scholar 

  8. Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke 2009;40(suppl 1):S86–7.

    Article  PubMed  Google Scholar 

  9. Cahill J, Calvert JW, Solaroglu I, Zhang JH. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke 2006;37(7):1868–74.

    Article  PubMed  Google Scholar 

  10. Cahill WJ, Calvert JH, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1341–53.

    Article  PubMed  CAS  Google Scholar 

  11. Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 2001;902(2):171–7.

    Article  PubMed  CAS  Google Scholar 

  12. Chen G, Wu J, Sun C, Qi M, Hang C, Gong Y, et al. Potential role of JAK2 in cerebral vasospasm after experimental subarachnoid hemorrhage. Brain Res. 2008;1214:136–44.

    Article  PubMed  CAS  Google Scholar 

  13. Chen G, Zhang S, Shi J, Ai J, Hang C. Effects of recombinant human erythropoietin (rhEPO) on the JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine 2009;45(3):162–8.

    Article  PubMed  Google Scholar 

  14. Chen W, Ostrowski RP, Obenaus A, Zhang JH. Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol. 2009;216(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng G, Wei L, Zhi-Dan S, Shi-Guang Z, Xiang-Zhen L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009;10:7.

    Article  PubMed  Google Scholar 

  16. Dietrich HH, Dacey RG Jr. Molecular keys to the problems of cerebral vasospasm. Neurosurgery 2000;46(3):517–30.

    Article  PubMed  CAS  Google Scholar 

  17. Dorsch NW. Cerebral arterial spasm-a clinical review. Br J Neurosurg. 1995;9:403–12.

    Article  PubMed  CAS  Google Scholar 

  18. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 2003;53(1):123–33.

    Article  PubMed  Google Scholar 

  19. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27(5):975–82.

    PubMed  CAS  Google Scholar 

  20. Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Yegen BC, Sener G. Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res. 2009;46(3):324–32.

    Article  PubMed  CAS  Google Scholar 

  21. Frykholm P, Andersson JL, Langstrom B, Persson L, Enbald P. Haemodynamic and metabolic disturbances in the acute stage of subarachnoid haemorrhage demonstrated by PET. Acta Neural Scand. 2004;109:25–32.

    Article  CAS  Google Scholar 

  22. Helton R, Cui J, Scheele JR, Ellison JA, Ames C, Gibson C, et al. Brain-specific knock-out of hypoxia-inducible factor-1 alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci. 2005;25:4099–107.

    Article  PubMed  CAS  Google Scholar 

  23. Hijdra A, Braakman R, van Gijn J, Vermeulen M, van Crevel H. Aneurysmal subarachnoid hemorrhage. Complications and outcome in a hospital population. Stroke 1987;18(6):1061–7.

    Article  PubMed  CAS  Google Scholar 

  24. Hirano K, Kanaide H. Role of proteinase-activated receptors in the vascular system. J Atheroscler Thromb. 2003;10:211–25.

    Article  PubMed  CAS  Google Scholar 

  25. Hishikawa T, Ono S, Ogawa T, Tokunage K, Sugiu K, Date I. Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery 2008;62(1):232–40.

    Article  PubMed  Google Scholar 

  26. Horky LL, Pluta RM, Boock RJ, Oldfield EH. Role of ferrous iron chelator 2,2’-dipyridyl in preventing delayed vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg. 1998;88:298–303.

    Article  PubMed  CAS  Google Scholar 

  27. Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, et al. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 2007;107(1):128–35.

    Article  PubMed  CAS  Google Scholar 

  28. Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1α accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22:L689–96.

    Article  Google Scholar 

  29. Kai Y, Hirano K, Maeda Y, Nishimura J, Sasaki T, Kanaide H. Prevention of the hypercontractile to thrombin by proteinase-activated receptor 1 antagonist in subarachnoid hemorrhage. Stroke 2007;38:3259–65.

    Article  PubMed  CAS  Google Scholar 

  30. Karaoglan A, Akdemir O, Barut S, Kokturk S, Uzun H, Tasyurekli M, et al. The effect of resveratrol on vasospasm after experimental subarachnoid hemorrhage in rats. Surg Neurol. 2008;70(4):337–43.

    Article  PubMed  Google Scholar 

  31. Kasuya H, Shimizu T, Takakura K. Thrombin activity in CSF after SAH is correlated with the degree of SAH the persistence of subarachnoid clot and the development vasospasm. Acta Neurochir (Wien). 1998;140(6):579–84.

    Article  CAS  Google Scholar 

  32. Kitaoka T, Hua Y, Xi G, Hoff JT, Keep RF. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke 2002;33(12):3012–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke 2002;33:200–8.

    Article  PubMed  Google Scholar 

  34. Kumagai N, Chiba Y, Hosono M, Fujii M, Kawamura N, Keino H, et al. Involvement of pro-inflammatory cytokines and microglia in an age-associated neurodegeneration model, the SAMP10 mouse. Brain Res. 2007;1185:75–85.

    Article  PubMed  CAS  Google Scholar 

  35. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    Article  PubMed  CAS  Google Scholar 

  36. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Bio Chem. 1998;273(37):24266–71.

    Article  CAS  Google Scholar 

  37. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–90.

    Article  PubMed  CAS  Google Scholar 

  38. Lin CL, Shih HC, Dumont AS, Kassell NF, Lieu AS, Su YF, et al. The effect of 17beta-estradiol in attenuating experimental subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosurg. 2006;104(2):298–304.

    Article  PubMed  CAS  Google Scholar 

  39. Linn FH, Rinkel GJ, Algra A, Van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke 1996;27(4):625–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.

    Article  PubMed  CAS  Google Scholar 

  41. Lu H, Shi JX, Chen HL, Hang CH, Wang HD, Yin HX. Expression of monocyte chemoattractant protein-1 inthe cerebral artery after experimental subarachnoid hemmorrhage. Brain Res. 2009;1262:73–80.

    Article  PubMed  CAS  Google Scholar 

  42. Matz PG, Copin JC, Chan PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke 2000;31:2450–59.

    Article  PubMed  CAS  Google Scholar 

  43. McGirt MJ, Blessing R, Alexander MJ, Nimjee SM, Woodworth GF, Friedman AH, et al. Risk of cerebral vasospasm after subarachnoid hemorrhage reduced by statin therapy: a multivariate analysis of an institutional experience. J Neurosurg. 2006;105:671–74.

    Article  PubMed  CAS  Google Scholar 

  44. McGirt MJ, Lynch JR, Parra A, Sheng H, Pearlstein RD, Laskowitz DT, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke 2002;33:2950–56.

    Article  PubMed  CAS  Google Scholar 

  45. McGirt MJ, Parra A, Sheng H, Higuchi Y, Oury TD, Laskowitz DT, et al. Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase. Stroke 2002;33:2317–23.

    Article  PubMed  CAS  Google Scholar 

  46. McGirt MJ, Pradilla G, Legnani FG, Thai QA, Recinos PF, Tamargo RJ, et al. Systemic administration of simavastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 2006;58(5):945–51.

    Article  PubMed  Google Scholar 

  47. Mori T, Nagata K, Town T, Tan J, Matsui T, Asano T. Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model. Stroke 2001;32:636–42.

    Article  PubMed  CAS  Google Scholar 

  48. Nishihashi T, Trandafir CC, Wang A, Ji X, Shimizu Y, Kurahashi K. Hypersensitivity to hydroxyl radicals in rat basilar artery after subarachnoid hemorrhage. J Pharmacol Sci. 2006;100(3):234–6.

    Article  PubMed  CAS  Google Scholar 

  49. O’Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126–31.

    Article  PubMed  Google Scholar 

  50. Ohyama H, Hosomi N, Takahashi T, Mizushige K, Kohno M. Thrombin inhibition attenuates neurodegeneration and cerebral edema formation following transient forebrain ischemia. Brain Res. 2001;902(2):264–71.

    Article  PubMed  CAS  Google Scholar 

  51. Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.

    Article  PubMed  CAS  Google Scholar 

  52. Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Yoshida J, Takayasu M. Modification of endothelial nitric oxide synthase through AMPK after experimental subarachnoid hemorrhage. J Neurotrauma. 2009;26(7):1157–65.

    Article  PubMed  Google Scholar 

  53. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105(1):23–56.

    Article  PubMed  CAS  Google Scholar 

  54. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.

    Article  PubMed  CAS  Google Scholar 

  55. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev. 1994;46:325–415.

    PubMed  CAS  Google Scholar 

  56. Santhanam AV, Smith LA, Akiyama M, Rosales AG, Bailey KR, Katusic ZS. Role of endothelial NO synthase phosphorylation in cerebrovascular protective effect of recombinant erythropoietin during subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 2005;36(12):2731–7.

    Article  PubMed  CAS  Google Scholar 

  57. Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336:28–40.

    Article  PubMed  CAS  Google Scholar 

  58. Schubert GA, Schilling L, Thome C. Clazosentan, an endothelin receptor antagonist, prevents early hypoperfusion during the acute phase of massive experimental subarachnoid hemorrhage: a laser doppler flowmetry study in rats. J Neurosurg. 2008;109(6):1134–40.

    Article  PubMed  CAS  Google Scholar 

  59. Semenza GL. Signal transduction to hypoxia inducible factor 1. Biochem Pharmacol. 2002;64:993–8.

    Article  PubMed  CAS  Google Scholar 

  60. Sen O, Caner H, Aydin MV, Ozem O, Atalay B, Altinors N, et al. The effect of mexiletine on the level of lipid peroxidation and apoptosis of endothelium following experimental subarachnoid hemorrhage. Neurol Res. 2006;28:859–63.

    Article  PubMed  CAS  Google Scholar 

  61. Shih HC, Lin CL, Lee TY, Lee WS, Hsu C. 17beta-estradiol inhibits subarachnoid hemorrhage-induced inducible nitric oxide synthase gene expression by interfering with the nuclear factor kappa B transsaction. Stroke 2006;37(12):3025–31.

    Article  PubMed  CAS  Google Scholar 

  62. Shih HC, Lin CL, Wu SC, Kwan AL, Hong YR, Howng SL. Upregulation of estrogen receptor alpha and mediation of 17beta-estradiol vasoprotective effects via estrogen receptor alpha in basilar arteries in rats after experimental subarachnoid hemorrhage. J Neurosurg. 2008;109(1):92–9.

    Article  PubMed  CAS  Google Scholar 

  63. Sugawara T, Ayer R, Jadhav V, Chen W, Tsubokawa T, Zhang JH. Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J Neurosci Res. 2008;86(16):3635–43.

    Article  PubMed  CAS  Google Scholar 

  64. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH. Thrombin inhibition by argatroban ameliorate early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke 2009;40:1530–32.

    Article  PubMed  Google Scholar 

  65. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke 2003;34(6):1497–500.

    Article  PubMed  CAS  Google Scholar 

  66. Vatter H, Weidauer S, Dias S, Preibisch C, Ngone S, Raabe A, et al. Persistence of the nitric oxide-dependent vasodilator pathway of cerebral vessels after experimental subarachnoid hemorrhage. Neurosurgery 2007;60(1):179–87.

    Article  PubMed  Google Scholar 

  67. Vatter H, Konczalla J, Weidauer S, Preibisch C, Raabe A, Zimmermann M, et al. Characterization of the endothelin-B receptor expression and vasomotor function during experimental cerebral vasospasm. Neurosurgery 2007;60(6):1100–8.

    Article  PubMed  Google Scholar 

  68. Voldby B, Enevoldsen EM. Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. J Neurosurg. 1982;56:186–96.

    Article  PubMed  CAS  Google Scholar 

  69. Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain 2000;123:205–21.

    Article  PubMed  Google Scholar 

  70. Wilkins RH. Cerebral vasospasm. Crit Rev Neurobiol. 1990;6:51–77.

    PubMed  CAS  Google Scholar 

  71. Yamaji T, Johshita H, Ishibashi M. Endothelin family in human plasma and cerebrospinal fluid. J Clin Endocrinol Metab. 1990;71:1611–15.

    Article  PubMed  CAS  Google Scholar 

  72. Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, et al. 2-methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol. 2006;202(2):348–56.

    Article  PubMed  CAS  Google Scholar 

  73. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. Novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332(6163):411–5.

    Article  PubMed  CAS  Google Scholar 

  74. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:419–31.

    Article  PubMed  CAS  Google Scholar 

  75. Zhou ML, Shi JX, Hang CH, Cheng HL, Qi XP, Mao L, et al. Potential contribution of nuclear factor-kappaB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Cereb Blood Flow Metab. 2007;27(9):1583–92.

    Article  PubMed  CAS  Google Scholar 

  76. Zimmermann M, Seifer V. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 1998;43(4):863–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Sozen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this paper

Cite this paper

Sozen, T. et al. (2011). Advances in Experimental Subarachnoid Hemorrhage. In: Feng, H., Mao, Y., Zhang, J.H. (eds) Early Brain Injury or Cerebral Vasospasm. Acta Neurochirurgica Supplements, vol 110/1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0353-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0353-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0352-4

  • Online ISBN: 978-3-7091-0353-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics