Skip to main content

Natural Antibodies and Atherosclerosis

  • Chapter
  • First Online:
Inflammation and Atherosclerosis

Abstract

The view of atherosclerosis as an inflammatory disease has been strongly supported by studies demonstrating the ability of both the innate and adaptive immune system to modulate its initiation and progression. Different explanations exist as to why the immune system is involved in atherogenesis: While the adaptive immune responses involve certain autoimmune characteristics that likely develop as a consequence of chronic tissue damage in the vasculature, the involvement of the innate immune system may initially represent a defensive host responses that becomes exhausted or inadequate due to the long persistence of the pathogenic insult [1–6]. Indeed recent evidence suggests that atherosclerosis is profoundly propagated by the retention, accumulation and persistence of modified LDL, apoptotic cells and cellular debris, as impaired clearance mechanisms of innate immunity result in accelerated lesion growth [7–9]. Natural antibodies (NAbs) represent a major layer of innate immunity that have been suggested to convey “house keeping” functions by promoting the clearance of cellular waste, which is necessary for maintaining immune homeostasis [10]. Although, B-cells are rarely found within atherosclerotic lesions, antibodies – including NAbs – as their major product are regularly found to be present. Recent evidence now shows that NAbs are not merely present, but that they actively modulate the atherosclerotic disease process [11]. Their involvement in atherogenesis has not only contributed to the understanding of the pathogenesis of atherosclerosis, but provided also important insights into the hypothesized “house keeping” functions of NAbs in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4):503–516

    Article  PubMed  CAS  Google Scholar 

  2. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol 27:165–197

    Article  PubMed  CAS  Google Scholar 

  3. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A et al (2002) Innate and acquired immunity in atherogenesis. Nat Med 8(11):1218–1226

    Article  PubMed  CAS  Google Scholar 

  4. Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91(4):281–291

    Article  PubMed  CAS  Google Scholar 

  5. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  PubMed  CAS  Google Scholar 

  6. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  7. Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10(1):36–46

    PubMed  CAS  Google Scholar 

  8. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16):1832–1844

    Article  PubMed  CAS  Google Scholar 

  9. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol 28(8):1421–1428

    Article  PubMed  CAS  Google Scholar 

  10. Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ et al (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105(12):1731–1740

    Article  PubMed  CAS  Google Scholar 

  11. Binder CJ, Shaw PX, Chang MK, Boullier A, Hartvigsen K, Horkko S et al (2005) The role of natural antibodies in atherogenesis. J Lipid Res 46(7):1353–1363

    Article  PubMed  CAS  Google Scholar 

  12. Avrameas S (1991) Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today 12(5):154–159

    PubMed  CAS  Google Scholar 

  13. Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25(4):174–179

    Article  PubMed  CAS  Google Scholar 

  14. Montecino-Rodriguez E, Dorshkind K (2006) New perspectives in B-1 B cell development and function. Trends Immunol 27(9):428–433

    Article  PubMed  CAS  Google Scholar 

  15. Martin F, Kearney JF (2001) B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 13(2):195–201

    Article  PubMed  CAS  Google Scholar 

  16. Berland R, Wortis HH (2002) Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 20:253–300

    Article  PubMed  CAS  Google Scholar 

  17. Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Annu Rev Immunol 11:501–538

    Article  PubMed  CAS  Google Scholar 

  18. Hardy RR, Hayakawa K (1994) CD5 B cells, a fetal B cell lineage. Adv Immunol 55:297–339

    Article  PubMed  CAS  Google Scholar 

  19. Hardy RR, Hayakawa K (1991) A developmental switch in B lymphopoiesis. Proc Natl Acad Sci U S A 88(24):11550–11554

    Article  PubMed  CAS  Google Scholar 

  20. Herzenberg LA (2000) B-1 cells: the lineage question revisited. Immunol Rev 175:9–22

    Article  PubMed  CAS  Google Scholar 

  21. Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11(1):34–46

    Article  PubMed  CAS  Google Scholar 

  22. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J (2000) Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci U S A 97(3):1184–1189

    Article  PubMed  CAS  Google Scholar 

  23. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35(1):252–260

    Article  PubMed  CAS  Google Scholar 

  24. Prodeus AP, Goerg S, Shen LM, Pozdnyakova OO, Chu L, Alicot EM et al (1998) A critical role for complement in maintenance of self-tolerance. Immunity 9(5):721–731

    Article  PubMed  CAS  Google Scholar 

  25. Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J (1998) Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol 160(10):4776–4787

    PubMed  CAS  Google Scholar 

  26. Baker N, Ehrenstein MR (2002) Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J Immunol 169(12):6686–6690

    PubMed  CAS  Google Scholar 

  27. Notley CA, Baker N, Ehrenstein MR (2010) Secreted IgM enhances B cell receptor signaling and promotes splenic but impairs peritoneal B cell survival. J Immunol 184(7):3386–3393

    Article  PubMed  CAS  Google Scholar 

  28. Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10(11):778–786

    Article  PubMed  CAS  Google Scholar 

  29. Vollmers HP, Brandlein S (2007) Natural antibodies and cancer. J Autoimmun 29(4):295–302

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz-Albiez R, Laban S, Eichmuller S, Kirschfink M (2008) Cytotoxic natural antibodies against human tumours: an option for anti-cancer immunotherapy? Autoimmun Rev 7(6):491–495

    Article  PubMed  CAS  Google Scholar 

  31. Szabo P, Relkin N, Weksler ME (2008) Natural human antibodies to amyloid beta peptide. Autoimmun Rev 7(6):415–420

    Article  PubMed  CAS  Google Scholar 

  32. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8(10):802–815

    Article  PubMed  CAS  Google Scholar 

  33. Song L, Leung C, Schindler C (2001) Lymphocytes are important in early atherosclerosis. J Clin Invest 108(2):251–259

    PubMed  CAS  Google Scholar 

  34. Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J et al (2001) Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 21(6):1011–1016

    Article  PubMed  CAS  Google Scholar 

  35. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C (1997) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99(11):2752–2761

    Article  PubMed  CAS  Google Scholar 

  36. Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE et al (1999) Requirement for CD154 in the progression of atherosclerosis. Nat Med 5(11):1313–1316

    Article  PubMed  CAS  Google Scholar 

  37. Zhou X, Nicoletti A, Elhage R, Hansson GK (2000) Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102(24):2919–2922

    PubMed  CAS  Google Scholar 

  38. Roselaar SE, Kakkanathu PX, Daugherty A (1996) Lymphocyte populations in atherosclerotic lesions of apoE−/− and LDL receptor−/− mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol 16(8):1013–1018

    Article  PubMed  CAS  Google Scholar 

  39. Zhou X, Hansson GK (1999) Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand J Immunol 50(1):25–30

    Article  PubMed  CAS  Google Scholar 

  40. Moos MP, John N, Grabner R, Nossmann S, Gunther B, Vollandt R et al (2005) The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(11):2386–2391

    Article  PubMed  CAS  Google Scholar 

  41. Caligiuri G, Nicoletti A, Poirier B, Hansson GK (2002) Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 109(6):745–753

    PubMed  CAS  Google Scholar 

  42. Major AS, Fazio S, Linton MF (2002) B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 22(11):1892–1898

    Article  PubMed  CAS  Google Scholar 

  43. Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K et al (2010) Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 185(7):4410–4419

    Article  PubMed  CAS  Google Scholar 

  44. Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L et al (2010) B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 207(8):1579–1587

    Article  PubMed  CAS  Google Scholar 

  45. Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206(10):2067–2077

    Article  PubMed  CAS  Google Scholar 

  46. Hamaguchi Y, Uchida J, Cain DW, Venturi GM, Poe JC, Haas KM et al (2005) The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J Immunol 174(7):4389–4399

    PubMed  CAS  Google Scholar 

  47. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO (2009) Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 120(5):417–426

    Article  PubMed  CAS  Google Scholar 

  48. Wick G, Perschinka H, Millonig G (2001) Atherosclerosis as an autoimmune disease: an update. Trends Immunol 22(12):665–669

    Article  PubMed  CAS  Google Scholar 

  49. Hulthe J (2004) Antibodies to oxidized LDL in atherosclerosis development – clinical and animal studies. Clin Chim Acta 348(1–2):1–8

    Article  PubMed  CAS  Google Scholar 

  50. Hartvigsen K, Chou MY, Hansen LF, Shaw PX, Tsimikas S, Binder CJ et al (2009) The role of innate immunity in atherogenesis. J Lipid Res 50(Suppl):S388–S393

    Article  PubMed  Google Scholar 

  51. Horkko S, Binder CJ, Shaw PX, Chang MK, Silverman G, Palinski W et al (2000) Immunological responses to oxidized LDL. Free Radic Biol Med 28(12):1771–1779

    Article  PubMed  CAS  Google Scholar 

  52. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW et al (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 86(4):1372–1376

    Article  PubMed  CAS  Google Scholar 

  53. Palinski W, Horkko S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK et al (1996) Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 98(3):800–814

    Article  PubMed  CAS  Google Scholar 

  54. Palinski W, Miller E, Witztum JL (1995) Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 92(3):821–825

    Article  PubMed  CAS  Google Scholar 

  55. Ameli S, Hultgardh-Nilsson A, Regnstrom J, Calara F, Yano J, Cercek B et al (1996) Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 16(8):1074–1079

    Article  PubMed  CAS  Google Scholar 

  56. George J, Afek A, Gilburd B, Levkovitz H, Shaish A, Goldberg I et al (1998) Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138(1):147–152

    Article  PubMed  CAS  Google Scholar 

  57. Nilsson J, Calara F, Regnstrom J, Hultgardh-Nilsson A, Ameli S, Cercek B et al (1997) Immunization with homologous oxidized low density lipoprotein reduces neointimal formation after balloon injury in hypercholesterolemic rabbits. J Am Coll Cardiol 30(7):1886–1891

    Article  PubMed  CAS  Google Scholar 

  58. Binder CJ, Hartvigsen K, Chang MK, Miller M, Broide D, Palinski W et al (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 114(3):427–437

    PubMed  CAS  Google Scholar 

  59. Friedman P, Horkko S, Steinberg D, Witztum JL, Dennis EA (2002) Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J Biol Chem 277(9):7010–7020

    Article  PubMed  CAS  Google Scholar 

  60. Chang MK, Bergmark C, Laurila A, Horkko S, Han KH, Friedman P et al (1999) Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A 96(11):6353–6358

    Article  PubMed  CAS  Google Scholar 

  61. Masmoudi H, Mota-Santos T, Huetz F, Coutinho A, Cazenave PA (1990) All T15 Id-positive antibodies (but not the majority of VHT15+ antibodies) are produced by peritoneal CD5+ B lymphocytes. Int Immunol 2(6):515–520

    Article  PubMed  CAS  Google Scholar 

  62. Harnett W, Harnett MM (1999) Phosphorylcholine: friend or foe of the immune system? Immunol Today 20(3):125–129

    Article  PubMed  CAS  Google Scholar 

  63. Briles DE, Forman C, Hudak S, Claflin JL (1982) Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med 156(4):1177–1185

    Article  PubMed  CAS  Google Scholar 

  64. Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX et al (2009) Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest 119(5):1335–1349

    Article  PubMed  CAS  Google Scholar 

  65. Tuominen A, Miller YI, Hansen LF, Kesaniemi YA, Witztum JL, Horkko S (2006) A natural antibody to oxidized cardiolipin binds to oxidized low-density lipoprotein, apoptotic cells, and atherosclerotic lesions. Arterioscler Thromb Vasc Biol 26(9):2096–2102

    Article  PubMed  CAS  Google Scholar 

  66. Chang MK, Binder CJ, Torzewski M, Witztum JL (2002) C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 99(20):13043–13048

    Article  PubMed  CAS  Google Scholar 

  67. Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS et al (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9(6):736–743

    Article  PubMed  CAS  Google Scholar 

  68. Faria-Neto JR, Chyu KY, Li X, Dimayuga PC, Ferreira C, Yano J et al (2006) Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189(1):83–90

    Article  PubMed  CAS  Google Scholar 

  69. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38(4):259–264

    Article  PubMed  CAS  Google Scholar 

  70. Chen Y, Park YB, Patel E, Silverman GJ (2009) IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol 182(10):6031–6043

    Article  PubMed  CAS  Google Scholar 

  71. Chen Y, Khanna S, Goodyear CS, Park YB, Raz E, Thiel S et al (2009) Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J Immunol 183(2):1346–1359

    Article  PubMed  CAS  Google Scholar 

  72. Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA et al (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200(11):1359–1370

    Article  PubMed  CAS  Google Scholar 

  73. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Witztum JL et al (2002) Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 22(1):101–107

    Article  PubMed  CAS  Google Scholar 

  74. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G et al (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249

    Article  PubMed  CAS  Google Scholar 

  75. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A et al (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11(2):155–161

    Article  PubMed  CAS  Google Scholar 

  76. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF et al (2000) Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 105(8):1049–1056

    Article  PubMed  CAS  Google Scholar 

  77. Febbraio M, Guy E, Silverstein RL (2004) Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol 24(12):2333–2338

    Article  PubMed  CAS  Google Scholar 

  78. Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE et al (2008) Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. Cardiovasc Res 78(1):185–196

    Article  PubMed  CAS  Google Scholar 

  79. Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G et al (1999) Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103(1):117–128

    Article  PubMed  CAS  Google Scholar 

  80. de Faire U, Frostegard J (2009) Natural antibodies against phosphorylcholine in cardiovascular disease. Ann N Y Acad Sci 1173:292–300

    Article  PubMed  Google Scholar 

  81. Tsimikas S, Brilakis ES, Lennon RJ, Miller ER, Witztum JL, McConnell JP et al (2007) Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J Lipid Res 48(2):425–433

    Article  PubMed  CAS  Google Scholar 

  82. Garrido-Sanchez L, Chinchurreta P, Garcia-Fuentes E, Mora M, Tinahones FJ (2010) A higher level of IgM anti-oxidized LDL antibodies is associated with a lower severity of coronary atherosclerosis in patients on statins. Int J Cardiol 145(2):263–264

    Article  PubMed  CAS  Google Scholar 

  83. Sjoberg BG, Su J, Dahlbom I, Gronlund H, Wikstrom M, Hedblad B et al (2009) Low levels of IgM antibodies against phosphorylcholine-A potential risk marker for ischemic stroke in men. Atherosclerosis 203(2):528–532

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Tsiantoulas, D., Binder, C.J. (2012). Natural Antibodies and Atherosclerosis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_15

Download citation

Publish with us

Policies and ethics