Skip to main content

Natural Antisense Transcripts in Bacteria

  • Chapter
Regulatory RNAs in Prokaryotes
  • 1397 Accesses

Abstract

This chapter focuses on special types of transcripts, those which originate from the complementary strand of an mRNA or functional RNA. As a consequence, these RNA molecules are, partially or to the extent of their full length, complementary to their target. Antisense transcripts are also called cis-antisense RNAs to differentiate them from trans-acting non-coding RNAs, which frequently act on their targets through short regions of complementarity and therefore are sometimes also referred to as antisense RNAs. The promoter and the first transcribed nucleotides of a noncoding RNA may also be located within an intergenic spacer and only later extend into the region of complementarity to another transcript. Antisense transcription sometimes results from read-through of protein-coding genes over a long distance, as observed for the antisense RNA to the ferric uptake regulator furA in Anabaena PCC7120. This gene is overlapped along its full length by the extremely long 3′ UTR of gene alr 1690 (Hernandez et al. 2005). Last but not least, a perfectly complementary antisense RNA may have additional targets in trans. All these cases are considered here as antisense RNAs, as long as there is a sense transcript expressed from the opposite strand of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T (2010) Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 38: 868–877

    Article  PubMed  CAS  Google Scholar 

  • Andre G, Even S, Putzer H, Burguiere P, Croux C, Danchin A et al. (2008) S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 36: 5955–5969

    Article  PubMed  CAS  Google Scholar 

  • Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C et al. (2010) Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 5: e10725

    Article  PubMed  Google Scholar 

  • Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G (2009) Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol Microbiol 74: 1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Case CC, Simons EL, Simons RW (1990) The IS10 transposase mRNA is destabilized during antisense RNA control. EMBO J 9: 1259–1266

    PubMed  CAS  Google Scholar 

  • Chauhan D, Folea IM, Jolley CC, Kouril R, Lubner CE, Lin S et al. (2011) A novel photosynthetic strategy for adaptation to low-iron aquatic environments. Biochemistry 50: 686–692

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Crosa JH (1996) Antisense RNA, fur, iron, and the regulation of iron transport genes in Vibrio anguillarum. J Biol Chem 271: 18885–18891

    Article  PubMed  CAS  Google Scholar 

  • Csiszar K, Houmard J, Damerval T, Tandeau de Marsac N (1987) Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: occurrence of an antisense RNA complementary to three overlapping transcripts. Gene 60: 29–37

    Article  PubMed  CAS  Google Scholar 

  • D’Alia D, Nieselt K, Steigele S, Muller J, Verburg I, Takano E (2010) Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 192: 1160–1164

    Article  CAS  Google Scholar 

  • Dornenburg JE, DeVita AM, Palumbo MJ, Wade JT (2010) Widespread antisense transcription in Escherichia coli. mBio 1: e00024–00010

    Article  PubMed  Google Scholar 

  • Döhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Nat Acad Sci USA 103: 7054–7058

    Article  Google Scholar 

  • Eguchi Y, Itoh T, Tomizawa J (1991) Antisense RNA. Annu Rev Biochem 60: 631–652

    Article  PubMed  CAS  Google Scholar 

  • Eiamphungporn W, Helmann JD (2009) Extracytoplasmic function sigma factors regulate expression of the Bacillus subtilis yabE gene via a cis-acting antisense RNA. J Bacteriol 191: 1101–1105

    Article  PubMed  CAS  Google Scholar 

  • Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M, Grills G et al. (2010) Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 192: 2359–2372

    Article  PubMed  CAS  Google Scholar 

  • Fozo EM, Kawano M, Fontaine F, Kaya Y, Mendieta KS, Jones KL et al. (2008) Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Mol Microbiol 70: 1076–1093

    Article  PubMed  CAS  Google Scholar 

  • Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (2010) Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38: 3743–3759

    Article  PubMed  CAS  Google Scholar 

  • Georg J, Hess WR (2011) Cis-antisense RNA: Another level of gene regulation in bacteria. Mol Microbiol Rev 75: in press

    Google Scholar 

  • Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR (2009) Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 5: 305

    Article  PubMed  Google Scholar 

  • Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M (2010) A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 38: 3362–3375

    Article  PubMed  CAS  Google Scholar 

  • Guell M, van Noort V, Yus E, Chen W-H, Leigh-Bell J, Michalodimitrakis K et al. (2009) Transcriptome complexity in a genome-reduced bacterium. Science 326:1268–1271

    Article  PubMed  Google Scholar 

  • Han K, Kim K-s, Bak G, Park H, Lee Y (2010) Recognition and discrimination of target mRNAs by Sib RNAs, a cis-encoded sRNA family. Nucleic Acids Research 38: 5851–5866

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Muro-Pastor AM, Flores E, Bes MT, Peleato ML, Fillat MF (2005) Identification of a furA cis antisense RNA in the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 355: 325–334

    Article  PubMed  Google Scholar 

  • Irnov I, Sharma CM, Vogel Jr, Winkler WC (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 38: 6637–6651

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Tomizawa J (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci USA 77: 2450–2454

    Article  PubMed  CAS  Google Scholar 

  • Jain C (1995) IS10 antisense control in vivo is affected by mutations throughout the region of complementarity between the interacting RNAs. J Mol Biol 246: 585–594

    PubMed  CAS  Google Scholar 

  • Kawano M, Aravind L, Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64: 738–754

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Reynolds AA, Miranda-Rios J, Storz G (2005) Detection of 5′-and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res 33: 1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Krinke L, Mahoney M, Wulff DL (1991) The role of the OOP antisense RNA in coliphage λ development. Mol Microbiol 5: 1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Krinke L, Wulff DL (1987) OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNase III-dependent mechanism. Genes Dev 1: 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Krinke L, Wulff DL (1990) RNase III-dependent hydrolysis of lambda cII-O gene mRNA mediated by lambda OOP antisense RNA. Genes Dev 4: 2223–2233

    Article  PubMed  CAS  Google Scholar 

  • Landt SG, Abeliuk E, McGrath PT, Lesley JA, McAdams HH, Shapiro L (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68: 600–614

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Groisman EA (2010) An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76: 1020–1033

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Zhang S, Saha S, Santa Anna S, Jiang C, Perkins J (2001) RNA expression analysis using an antisense Bacillus subtilis genome array. J Bacteriol 183: 7371–7380

    Article  PubMed  CAS  Google Scholar 

  • Legewie S, Dienst D, Wilde A, Herzel H, Axmann IM (2008) Small RNAs establish delays and temporal thresholds in gene expression. Biophys J 95: 3232–3238

    Article  PubMed  CAS  Google Scholar 

  • Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by small RNA. PLOS Biol 5: e229

    Article  PubMed  Google Scholar 

  • Levine E, Hwa T (2008) Small RNAs establish gene expression thresholds. Curr Opin Microbiol 11: 574–579

    Article  PubMed  CAS  Google Scholar 

  • Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46

    Article  PubMed  Google Scholar 

  • Lluch-Senar M, Vallmitjana M, Querol E, Pinol J (2007) A new promoterless reporter vector reveals antisense transcription in Mycoplasma genitalium. Microbiology 153: 2743–2752

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Simons RW (1990) The IS10 antisense RNA blocks ribosome binding at the transposase translation initiation site. EMBO J 9: 1267–1274

    PubMed  CAS  Google Scholar 

  • Makarova KS, Wolf YI, Koonin EV (2009) Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4: 19

    Article  PubMed  Google Scholar 

  • Masukata H, Tomizawa J (1984) Effects of point mutations on formation and structure of the RNA primer for ColE1 DNA replication. Cell 36: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Masukata H, Tomizawa J (1986) Control of primer formation for ColE1 plasmid replication: conformational change of the primer transcript. Cell 44: 125–136

    Article  PubMed  CAS  Google Scholar 

  • Mitschke J, Georg J, Scholz I, Sharma C, Dienst D, Bantscheff J et al. (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 108: 2124–2129

    Article  PubMed  CAS  Google Scholar 

  • Montero Llopis P, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T et al. (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466: 77–81

    Article  Google Scholar 

  • Nelson CM, Herron MJ, Felsheim RF, Schloeder BR, Grindle SM, Chavez AO et al. (2008) Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9: 364

    Article  PubMed  Google Scholar 

  • Opdyke JA, Fozo EM, Hemm MR, Storz G (2010) RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J Mol Biol 406: 29–43

    Article  PubMed  Google Scholar 

  • Opdyke JA, Kang JG, Storz G (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186: 6698–6705

    Article  PubMed  CAS  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P et al. (2009) Direct RNA sequencing. Nature 461: 814–818

    Article  PubMed  CAS  Google Scholar 

  • Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33: 966–976

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Cho BK, Park YS, Lovley D, Palsson BO, Zengler K (2010) Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res 9: 1304–1311

    Article  Google Scholar 

  • Rasmussen S, Nielsen HB, Jarmer H (2009) The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 73: 1043–1057

    Article  PubMed  CAS  Google Scholar 

  • Ross JA, Wardle SJ, Haniford DB (2010) Tn10/IS10 transposition is downregulated at the level of transposase expression by the RNA-binding protein Hfq. Mol Microbiol 78:607–621

    Article  PubMed  CAS  Google Scholar 

  • Salinas PC, Waldbeser LS, Crosa JH (1993) Regulation of the expression of bacterial iron transport genes: possible role of an antisense RNA as a repressor. Gene 123:33–38

    Article  PubMed  CAS  Google Scholar 

  • Schluter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Janicke S et al. (2010) A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics 11: 245

    Article  PubMed  Google Scholar 

  • Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR et al. (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 18: 1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A et al. (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464: 250–255

    Article  PubMed  CAS  Google Scholar 

  • Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21:339–345

    Article  PubMed  CAS  Google Scholar 

  • Silby MW, Levy SB (2008) Overlapping protein-encoding genes in Pseudomonas fluorescens Pf0-1. PLoS Genet 4: e1000094

    Article  PubMed  Google Scholar 

  • Silvaggi JM, Perkins JB, Losick R (2005) Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187: 6641–6650

    Article  PubMed  CAS  Google Scholar 

  • Silvaggi JM, Perkins JB, Losick R (2006) Genes for small, noncoding RNAs under sporulation control in Bacillus subtilis. J Bacteriol 188: 532–541

    Article  PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of ISI0 transposition. Cell 34: 683–691

    Article  PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1988) Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet 22: 567–600

    Article  PubMed  CAS  Google Scholar 

  • Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT et al. (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4: e1000163

    Article  PubMed  Google Scholar 

  • Sneppen K, Dodd IB, Shearwin KE, Palmer AC, Schubert RA, Callen BP et al. (2005) A mathematical model for transcriptional interference by RNA polymerase traffic in Escherichia coli. J Mol Biol 346: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Spiegelman WG, Reichardt LF, Yaniv M, Heinemann SF, Kaiser AD, Eisen H (1972) Bidirectional transcription and the regulation of Phage lambda repressor synthesis. Proc Natl Acad Sci USA 69: 3156–3160

    Article  PubMed  CAS  Google Scholar 

  • Stazic D, Lindell D, Steglich C (2011) Antisense RNA protects from RNase E degradation by RNA-RNA duplex formation during phage infection. Nucleic Acids Res Epub ahead of print: 10.1093/nar/gkr037

    Google Scholar 

  • Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR (2008) The challenge of regulation in a minimal phototroph: Non-coding RNAs in Prochlorococcus. PLoS Genetics 4: e1000173

    Article  PubMed  Google Scholar 

  • Stork M, Di Lorenzo M, Welch TJ, Crosa JH (2007) Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 189:3479–3488

    Article  PubMed  CAS  Google Scholar 

  • Swiercz JP, Hindra, Bobek J, Haiser HJ, Di Berardo C, Tjaden B et al. (2008) Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res 36: 7240–7251

    Article  PubMed  CAS  Google Scholar 

  • Thomason MK, Storz G (2010) Bacterial antisense RNAs: How many are there and what are they doing? Annu Rev Genet 44: 167–188

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950–956

    Article  PubMed  CAS  Google Scholar 

  • Tolmasky ME, Crosa JH (1995) Iron transport genes of the pJM1-mediated iron uptake system of Vibrio anguillarum are included in a transposon like structure. Plasmid 33: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa J, Itoh T (1981) Plasmid incompatibility determined by interaction of RNAI with primer transcript. Proc Natl Acad Sci USA 78: 6096–6100

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa J, Itoh T, Seizer G, Som T (1981) Inhibition of ColEI RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78: 1421–1425

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa J, Ohmori H, Bird RE (1977) Origin of replication of colicin El plasmid DNA. Proc Natl Acad Sci USA 74: 1865–1869

    Article  PubMed  CAS  Google Scholar 

  • Tramonti A, De Canio M, De Biase D (2008) GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70: 965–982

    PubMed  CAS  Google Scholar 

  • Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Hüttenhofer A et al. (2003) RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31: 6435–6443

    Article  PubMed  CAS  Google Scholar 

  • Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Ann Rev Microbiol 48: 713–742

    Article  CAS  Google Scholar 

  • Waldbeser LS, Chen Q, Crosa JH (1995) Antisense RNA regulation of the fatB iron transport protein gene in Vibrio anguillarum. Mol Microbiol 17: 747–756

    Article  PubMed  CAS  Google Scholar 

  • Waldbeser LS, Tolmasky ME, Actis LA, Crosa JH (1993) Mechanisms for negative regulation by iron of the fatA outer membrane protein gene expression in Vibrio anguillarum 775. J Biol Chem 268: 10433–10439

    PubMed  CAS  Google Scholar 

  • Xiao B, Li W, Guo G, Li BS, Liu Z, Tang B et al. (2009) Screening and identification of natural antisense transcripts in Helicobacter pylori by a novel approach based on RNase I protection assay. Mol Biol Rep 36: 1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Yachie N, Numata K, Saito R, Kanai A, Tomita M (2006) Prediction of non-coding and antisense RNA genes in Escherichia coli with Gapped Markov Model. Gene 372: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG et al. (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43: 10308–10313

    Article  PubMed  CAS  Google Scholar 

  • Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J (2008) Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett 279: 195–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Georg, J., Hess, W.R. (2012). Natural Antisense Transcripts in Bacteria. In: Regulatory RNAs in Prokaryotes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0218-3_5

Download citation

Publish with us

Policies and ethics