Skip to main content

The specific interaction between aminoacyl-tRNAs and elongation factor Tu

  • Chapter
Ribosomes

Abstract

EF-Tu couples the hydrolysis of GTP with the accurate delivery of aminoacyl-tRNAs (aa-tRNAs) into the encoded ribosomal A site. The well-studied catalytic cycle of EF-Tu (Figure 1) can be subdivided into five phases: (1) the binding of EF-Tu•GTP to elongator aa-tRNAs; (2) the binding of the resulting ternary complex to the ribosomal A/T site where codon sampling occurs; (3) a conformational change of both the ribosome and the ternary complex with subsequent hydrolysis of GTP; (4) disruption of the ternary complex with release of phosphate, accommodation of the aa-tRNA into the A site, and release of EF-Tu•GDP from the ribosome; and (5) GDP-GTP exchange catalyzed by EF-Ts. Many of these phases have been dissected into several discrete steps using a variety of biochemical and biophysical methods (Pape et al., 1998; Gromadski et al., 2002; Blanchard et al., 2004). The mechanistic details of this EF-Tu-dependent decoding pathway are the focus of several articles in this volume. Here we discuss how the thermodynamic details of the interaction between EF-Tu and aa-tRNA differ for each tRNA species. We will summarize data showing that the sequence of three base pairs in the T stem of tRNA “tunes” its affinity for EF-Tu in a way that compensates for the variable contribution of the esterified amino acid to the overall binding affinity. This ensures that any correctly aminoacylated tRNA can initially bind to EF-Tu•GTP tightly enough for delivery to the ribosome but weakly enough that it can be released from EF-Tu•GDP during decoding. It appears that this sequence-specific tuning is highly conserved in bacteria and can largely explain the complex pattern of sequence conservation in the T stems of all bacterial tRNAs.

The catalytic cycle of EF-Tu. A structure-based diagram of the five phases of EF-Tu function described in the text. The structures are not drawn to a uniform scale but are based on appropriate crystal structures. The tRNAs, amino acids, and codons in the E site (yellow), P site (green) and decoding site (red) are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara H, Uhlenbeck OC (2002) The tRNA specificity of Thermus thermophilus EF-Tu. Proc Natl Acad Sci USA 99: 3499–3504

    Article  PubMed  CAS  Google Scholar 

  • Asahara H, Uhlenbeck OC (2005) Predicting the binding affinities of misacylated tRNAs for Thermus thermophilus EF-Tu•GTP. Biochemistry 44: 11 254–11 261

    Article  CAS  Google Scholar 

  • Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD (2004) tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11: 1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Dale T, Sanderson LE, Uhlenbeck OC (2004) The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid. Biochemistry 43: 6159–6166

    Article  PubMed  CAS  Google Scholar 

  • Fahlman RP, Dale T, Uhlenbeck OC (2004) Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol Cell 16: 799–805

    Article  PubMed  CAS  Google Scholar 

  • Fischer W, Doi T, Ikehara M, Ohtsuka E, Sprinzl, M (1985) Interaction of methionine-specific tRNAs from Escherichia coli with immobilized elongation factor Tu. FEBS Lett 192: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Forster C, Ott G, Forchhammer K, Sprinzl M (1990) Interaction of a selenocysteine-incorporating tRNA with elongation factor Tu from E. coli. Nucleic Acids Res 18: 487–491

    Article  PubMed  CAS  Google Scholar 

  • Gromadski KB, Wieden HJ, Rodnina MV (2002) Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu. Biochemistry 41: 162–169

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski H (1988) Negative correlation between the abundance of Escherichia coli aminoacyl-tRNA families and their affinities for elongation factor Tu-GTP. J Theor Biol 133: 363–370

    Article  PubMed  CAS  Google Scholar 

  • LaRiviere FJ, Wolfson AD, Uhlenbeck OC (2001) Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Ledoux S, Uhlenbeck OC (2008) Different aa-tRNAs are selected uniformly on the ribosome. Mol Cell 31: 114–123

    Article  PubMed  CAS  Google Scholar 

  • Louie A, Ribeiro NS, Reid BR, Jurnak F (1984) Relative affinities of all Escherichia coli aminoacyl-tRNAs for elongation factor Tu-GTP. J Biol Chem 259: 5010–5016

    PubMed  CAS  Google Scholar 

  • Louie A, Jurnak F (1985) Kinetic studies of Escherichia coli elongation factor Tu-guanosine 5′-triphosphate-aminoacyl-t RNA complexes. Biochemistry 24: 6433–6439

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270: 1464–1472

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Thirup S, Kjeldgaard M, Nyborg J (1999) The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7: 143–156

    Article  PubMed  CAS  Google Scholar 

  • Ott G, Schiesswohl M, Kiesewetter S, Forster C, Arnold L, Erdmann VA, Sprinzl M (1990) Ternary complexes of Escherichia coli aminoacyl-tRNAs with the elongation factor Tu and GTP: thermodynamic and structural studies. Biochim Biophys Acta 1050: 222–225

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (1998) Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 17: 7490–7497

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Fricke R, Kuhn L, Wintermeyer W (1995) Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J 14: 2613–2619

    PubMed  CAS  Google Scholar 

  • Roy H, Becker HD, Mazauric MH, Kern D (2007) Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 35: 3420–3430

    Article  PubMed  CAS  Google Scholar 

  • Saks ME, Sampson JR, Abelson J (1998) Evolution of a transfer RNA gene through a point mutation in the anticodon. Science 279: 1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Saks ME, Conery J S. (2007) Anticodon-dependent conservation of bacterial tRNA gene sequences. RNA 13: 651–660

    Article  PubMed  CAS  Google Scholar 

  • Sanderson LE, Uhlenbeck OC (2007a) The 51–63 base pair of tRNA confers specificity for binding by EF-Tu. RNA 13: 835–840

    Article  PubMed  CAS  Google Scholar 

  • Sanderson LE, Uhlenbeck OC (2007b) Directed Mutagenesis Identifies Amino Acid Residues Involved in Elongation Factor Tu Binding to yeast Phe-tRNA(Phe) J Mol Biol 368: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Sanderson LE, Uhlenbeck OC (2007c) Exploring the specificity of bacterial elongation factor Tu for different tRNAs. Biochemistry 46: 6194–6200

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy F V. t., Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Schrader JM, Chapman SJ, Uhlenbeck OC (2009) Understanding the sequence specificity of tRNA binding to elongation factor Tu using tRNA mutagenesis. J Mol Biol 386: 1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Schrader JM, Chapman SJ, Uhlenbeck OC (2011) The affinity of aminoacyl-tRNA to elongation factor Tu is tuned for optimal decoding. PNAS (in press)

    Google Scholar 

  • Schulman LH, Pelka H, Sundari RM (1974) Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor. J Biol Chem 249: 7102–7110

    PubMed  CAS  Google Scholar 

  • Seong BL, RajBhandary UL (1987) Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc Natl Acad Sci USA 84: 8859–8886

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Schrader, J.M., Saks, M.E., Uhlenbeck, O.C. (2011). The specific interaction between aminoacyl-tRNAs and elongation factor Tu. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_15

Download citation

Publish with us

Policies and ethics