Skip to main content

Phase transitions with interfacial energy: convexity conditions and the existence of minimizers

  • Chapter
Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

The article presents a variational theory of sharp phase interfaces bearing a deformation dependent energy. The theory involves both the standard and Eshelby stresses. The constitutive theory is outlined including the symmetry considerations and some particular cases. The existence of phase equilibria is proved based on appropriate convexity properties of the interfacial energy. Some generalization of the convexity properties is given and a relationship established to the semiellipticity condition from the theory of parametric integrals over rectifiable currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • F. J. Almgren, Jr. Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems among Surfaces of Varying Topological Type and Singularity Structure. Annals of Mathematics, 87:321–391, 1968.

    Article  MathSciNet  Google Scholar 

  • L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford, Clarendon Press 2000.

    MATH  Google Scholar 

  • J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63:337–403, 1977.

    Article  MATH  Google Scholar 

  • J. M. Ball, and R. D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100:13–52, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • J. M. Ball, and F. Murat. W 1,p-quasiconvexity and variational problems for multiple integrals. J. Fund. Anal., 58:225–253, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Dacorogna. Direct methods in the calculus of variations. Second Edition. Berlin, Springer, 2008.

    MATH  Google Scholar 

  • J. D. Eshelby. The force on an elastic singularity. Phil. Trans. Royal Soc. London, A244:87–112, 1951.

    MATH  MathSciNet  Google Scholar 

  • J. D. Eshelby. Continuum theory of defects. In D. Turnbull editor, Solid State Physics, vol. 3 pp. 79–144: Academic Press, New York, 1956.

    Google Scholar 

  • H. Fédérer. Geometric measure theory. New York, Springer, 1969.

    MATH  Google Scholar 

  • I. Fonseca. Interfacial energy and the Maxwell rule. Arch. Rational Mech. Anal., 106:63–95,1989.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Giaquinta, G. Modica, and J. Souček. Cartesian currents, weak diffeomorphisms and existence theorems in non-linear elasticity. Arch. Rational Mech. Anal., 106:97–160,1989.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Giaquinta, G. Modica, and J. Souček. Cartesian Currents in the Calculus of Variations I, II. Berlin, Springer, 1998.

    Google Scholar 

  • M. E. Gurtin. The nature of configurational forces. Arch. Rational Mech. Anal., 131:67–100, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • M. E. Gurtin. Configurational forces as basic concepts of continuum physics. New York, Springer, 2000.

    Google Scholar 

  • M. E. Gurtin, and I. Murdoch. A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal., 57:291–323, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  • M. E. Gurtin, and A. Struthers. Multiphase thermomechanics with interfacial structure, 3. Evolving phase boundaries in the presence of bulk deformation. Arch. Rational Mech. Anal., 112:97–160, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • P. H. Leo, and R. F. Sekerka. The effect of surface stress on crystal-melt and crystal-crystal equilibrium. Acta Metall., 37:3119–3138, 1989.

    Article  Google Scholar 

  • J. E. Marsden, and T. J. R. Hughes. Mathematical foundations of elasticity. Englewood Cliffs, Prentice-Hall, 1983.

    MATH  Google Scholar 

  • C. B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25–53, 1952.

    MATH  MathSciNet  Google Scholar 

  • C. B. Morrey, Jr. Multiple integrals in the calculus of variations. New York, Springer, 1966.

    MATH  Google Scholar 

  • S. Müller. Variational Models for Microstructure and Phase Transitions. In S. Hildebrandt, M. Struwe editor, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math. 1713 pp. 85–210, Springer, Berlin, 1999.

    Chapter  Google Scholar 

  • S. Müller, Q. Tang, and B. S. Yan. On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré, Analyse non linéaire, 11:217–243, 1994.

    MATH  Google Scholar 

  • G. P. Parry. On shear bands in unloaded crystals. J. Mech. Phys. Solids, 35:367–382, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Pitteri, and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. Boca Raton, Chapman & Hall/CRC, 2003.

    MATH  Google Scholar 

  • P. Podio-Guidugli. Configurational balances via variational arguments. Interfaces and Free Boundaries, 3:223–232, 2001.

    MATH  MathSciNet  Google Scholar 

  • P. Podio-Guidugli. Configurational forces: are they needed? Mechanics Research Communications, 29:513–519, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56:3486–3506, 2008

    Article  MATH  MathSciNet  Google Scholar 

  • M. Ŝilhavý. Phase transitions with inter facial energy: a variational approach. Preprint, Institute of Mathematics, AS CR, Prague. 2008-10-22

    Google Scholar 

  • P. Steinmann. On boundary potential energies in deformational and configurational mechanics. Journal of the Mechanics and Physics of Solids, 56:772–800, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Whitney. Geometric integration theory. Princeton, Princeton University Press, 1957.

    MATH  Google Scholar 

  • G. Wulff. Zur Frage der Geschwindigkeit des Wachstums and der Auflösung der Kristallflächen. Zeitschrift für Kristallographie, 34:449–530, 1901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Šilhavý, M. (2010). Phase transitions with interfacial energy: convexity conditions and the existence of minimizers. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics