Skip to main content

Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls

  • Chapter
Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

In this contribution a general framework for the construction of polyconvex anisotropic strain energy functions, which a priori satisfy the condition of a stress-free reference configuration, is given. In order to show the applicability of polyconvex functions, two application fields are discussed. First, a comparative analysis of several polyconvex functions is provided, where the models are adjusted to experiments of soft biological tissues from arterial walls. Second, thin-shell simulations, where polyconvex material models are used, show a strong influence of anisotropy when comparing isotropic shells with anisotropic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Y. Başar and Y. Ding. Shear deformation models for large-strain shell analysis. International Journal of Solids and Structures, 34:1687–1708, 1997.

    Article  MATH  Google Scholar 

  • Y. Başar and R. Grytz. Incompressibility at large strains and finite-element implementation. Acta Mechanica, 168:75–101, 2004.

    Article  MATH  Google Scholar 

  • J. M. Ball. Constitutive equalities and existence theorems in elasticity. In R. J. Knops, editor, Symposium on Non-Well Posed Problems and Logarithmic Convexity, volume 316. Springer-Lecture Notes in Math., 1977a.

    Google Scholar 

  • J.M. Ball. Convexity conditions and existence theorems in non-linear elasticity. Archive for Rational Mechanics and Analysis, 63:337–403, 1977b.

    Article  MATH  Google Scholar 

  • D. Balzani. Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Phd-thesis, University Duisburg-Essen, Verlag Glückauf Essen, 2006.

    Google Scholar 

  • D. Balzani, P. Neff, J. Schröder, and G.A. Holzapfel. A polyconvex frame-work for soft biological tissues. Adjustment to experimental data. International Journal of Solids and Structures, 43(20):6052–6070, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Balzani, F. Gruttmann, and J. Schröder. Analysis of thin shells using anisotropic polyconvex energy densities. Computer Methods in Applied Mechanics and Engineering, 197:1015–1032, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Betsch, F. Gruttmann, and E. Stein. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Computer Methods in Applied Mechanics and Engineering, 130:57–79, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Betten. Formulation of anisotropic constitutive equations. In J.P. Boehler, editor, Applications of tensor functions in solid mechanics, volume 292 of Courses and Lectures of CISM. Springer, 1987.

    Google Scholar 

  • J.P. Boehler. Introduction to the invariant formulation of anisotropic constitutive equations. In J.P. Boehler, editor, Applications of tensor functions in solid mechanics, number 292 in Courses and Lectures of CISM, pages 13–30. Springer, 1987.

    Google Scholar 

  • B.D. Coleman and W. Noll. On the thermostatics of continuous media. Archive of Rational Mechanics and Analysis, 4:97–128, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Dacorogna. Direct methods in the calculus of variations. Applied Mathematical Science, 78, 1989.

    Google Scholar 

  • T.C. Doyle and J.L. Ericksen. Nonlinear elasticity. In H.L. Dryden and Th. von Kármán, editors, Advances in Applied Mechanics IV. Academic Press, New York, 1956.

    Google Scholar 

  • E. Dvorkin, D. Pantuso, and E. Repetto. A formulation of the mitc4 shell element for finite strain elasto-plastic analysis. 125:17–40, 1995.

    Google Scholar 

  • A. Ehret and M. Itskov. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tisues. Journal of Material Science, 42:8853–9963, 2007.

    Article  Google Scholar 

  • J.L. Ericksen and R.S. Rivlin. Large elastic deformations of homogeneous anisotropic materials. Journal of Rational Mechanics and Analysis, 3: 281–301, 1957.

    MathSciNet  Google Scholar 

  • T. Gasser, R. Ogden, and G.A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3:15–35, 2006.

    Article  Google Scholar 

  • A.E. Green and P.M. Naghdi. On the derivation of shell theories by direct approach. Journal of Applied Mechanics, 41:173–176, 1974.

    MATH  Google Scholar 

  • S. Hartmann and P. Neff. Existence theory for a modified polyconvex hyperelastic relation of generalized polynomial-type in the case of nearly-incompressibility. International Journal of Solids and Structures, 40: 2767–2791, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • G. A. Holzapfel. Determination of material models for arterial walls from uniaxial extension tests and histological structure. Journal of Theoretical Biology, 238(2):290–302, 2006.

    Article  MathSciNet  Google Scholar 

  • G. A. Holzapfel, Th.C. Gasser, and R.W. Ogden. A new constitutive frame-work for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61:1–48, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • G.A. Holzapfel, T.C. Gasser, and R.W. Ogden. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. Journal of Biomechanical Engineering, 126:264–275, 2004a.

    Article  Google Scholar 

  • G.A. Holzapfel, G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. Journal of Biomechanical Engineering, 126:657–665, 2004b.

    Article  Google Scholar 

  • M. Itskov and A. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 41(14):3833–3848, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Klinkel and S. Govindjee. Using finite strain 3D-material models in beam and shell elements. Engineering Computations, 19(8):902–921, 2002.

    Article  MATH  Google Scholar 

  • B. Markert, W. Ehlers, and N. Karajan. A general polyconvex strain-energy function for fiber-reinforced materials. Proceedings of Applied Mathematics and Mechanics, 5:245–246, 2005.

    Google Scholar 

  • J. Merodio and P. Neff. A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid. Archive of Applied Mechanics, 58:293–303, 2006.

    MATH  MathSciNet  Google Scholar 

  • C.B. Morrey. Quasi-connvexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics, 2:25–53, 1952.

    MATH  MathSciNet  Google Scholar 

  • P. Neff. Mathematische Analyse multiplikativer Viskoplastizität. Shaker ver lag, isbn:3-8265-7560-1, Fachbereich Mathematik, Technische Universität Darmstadt, 2000.

    Google Scholar 

  • M.R. Roach and A.C. Burton. The reason for the shape of the distensibility curves of arteries. 35:681–690, 1957.

    Google Scholar 

  • M. Rüter and E. Stein. Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Computer Methods in Applied Mechanics and Engineering, 190:519–541, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder and N. Neff. On the construction of polyconvex anisotropic free energy functions. In C. Miehe, editor, Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pages 171–180, Dordrecht, 2001. Kluwer Adcademic Publishers.

    Google Scholar 

  • J. Schröder and P. Neff. Application of polyconvex anisotropic free energies to soft tissues. In H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V) in Vienna, Austria., 2002.

    Google Scholar 

  • J. Schröder and P. Neff. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. International Journal of Solids and Structures, 40:401–445, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and D. Balzani. A variational approach for materially stable anisotropic hyperelasticity. International Journal of Solids and Structures, 42(15):4352–4371, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56(12):3486–3506, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • C. A. J. Schulze-Bauer, P. Regitnig, and G. A. Holzapfel. Mechanics of the human femoral advent it ia including the high-pressure response. American Journal of Physiology — Heart and Circulatory Physiology, 282:H2427–H2440, 2002.

    Google Scholar 

  • J.C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 33:1413–1449, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo and M.S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595–1638, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • A. J. M. Spencer. Continuum Physics Vol. 1, chapter Theory of Invariants, pages 239–353. Academic Press, New York, 1971.

    Google Scholar 

  • J.A. Weiss, B.N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyp er elasticity. Computer Methods in Applied Mechanics and Engineering, 135:107–128, 1996.

    Article  MATH  Google Scholar 

  • Q.S. Zheng and A.J.M. Spencer. Tensors which characterize anisotropies. International Journal of Engineering Science, 31(5):679–693, 1993.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Balzani, D., Schröder, J., Neff, P. (2010). Applications of anisotropic polyconvex energies: thin shells and biomechanics of arterial walls. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics