Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

In large strain elasticity the existence of minimizers is guaranteed if the variational functional to be minimized is sequentially weakly lower semicontinuous (s.w.l.s) and coercive. Therefore, polyconvex functions — which are always s.w.l.s. — could be very helpful for the modeling of isotropic as well as anisotropic hyperelastic materials. For isotropy a variety of polyconvex models are well-known from the literature. In this contribution we focus on the construction of anisotropic polyconvex functions, especially for the case of transversely isotropic and orthotropic symmetries. In order to arrive at a coordinate-invariant formulation we use the concept of structural tensors and apply representation theorems of tensor functions. — This review article is the result of a long, close, and fruitful cooperation with Patrizio Neff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • S. S. Antman. Nonlinear problems of elasticity. Springer, 1995.

    Google Scholar 

  • J. M. Ball. Convexity conditions and existence theorems in non-linear elasticity. Archive for Rational Mechanics and Analysis, 63:337–403, 1977a.

    Article  MATH  Google Scholar 

  • J. M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. In R.J. Knops, editor, Herriot Watt Symposion: Nonlinear Analysis and Mechanics., volume 1, pages 187–238. Pitman, London, 1977b.

    Google Scholar 

  • J.M. Ball. Some open problems in elasticity. In Geometry, Mechanics and Dynamics, pages 3–59. Springer, New York, 2002.

    Google Scholar 

  • D. Balzani. Polyconvex anisotropic energies and modeling of damage applied to arterial walls. PhD thesis, Institut für Mechanik, Abteilung Bauwissenschaften, Fakultät für Ingenieurwissenschaften, 2006.

    Google Scholar 

  • D. Balzani, P. Neff, J. Schröder, and G.A. Holzapfel. A polyconvex frame-work for soft biological tissues. Adjustment to experimental data. International Journal of Solids and Structures, 43(20):6052–6070, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. On irreducible representations for isotropic scalar functions. Zeitschrift für Angewandte Mathematik und Mechanik, 57:323–327, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17(2):153–190, 1978.

    MATH  MathSciNet  Google Scholar 

  • J. P. Boehler. A simple derivation of res presentations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik, 59:157–167, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • J. P. Boehler, editor. Applications of tensor functions in solid mechanics. Springer, 1987a.

    Google Scholar 

  • J. P. Boehler. Introduction to the invariant formulation of anisotropic constitutive equations. In J. P. Boehler, editor, Applications of Tensor Functions in Solid Mechanics, volume 292 of CISM Courses and Lectures, pages 13–30. Springer, 1987b.

    Google Scholar 

  • P. G. Ciarlet. Mathematical Elasticity, Vol I: Three-Dimensional Elasticity. Studies in Mathematics and its Applications. Elsevier, Amsterdam, 1988.

    Google Scholar 

  • B. D. Coleman and W. Noll. On the thermostatics of continuous media. Archive for Rational Mechanics and Analysis, 4:97–128, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Dacorogna. Direct methods in the calculus of variations. Springer, 2000.

    Google Scholar 

  • A. Ehret and M. Itskov. A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues. Journal of Materials Science, 42: 8853–8863, 2007.

    Article  Google Scholar 

  • A. E. Green and J. E. Adkins. Large elastic deformations and non-linear continuum mechanics. Clarendon Press, Oxford, (second edition 1970) edition, 1960.

    MATH  Google Scholar 

  • S. Hartmann and P. Neff. Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. International Journal of Solids and Structures, 40:2767–2791, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Hill. On uniqueness and stability in the theory of finite elastic strains. Journal of the Mechanics and Physics of Solids, 5:229–241, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Itskov and N. Aksel. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 41:3833–3848, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Itskov, A.E. Ehret, and D. Mavrillas. A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomechanics and Modeling in Mechanobiology, 5:17–26, 2006.

    Article  Google Scholar 

  • N. Kambouchev, J. Fernandez, and R. Radovitzky. A polyconvex model for materials with cubic symmetry. Modelling and Simulation in Material Science and Engineering, 15:451–467, 2007.

    Article  Google Scholar 

  • A. Krawietz. Materialtheorie — Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer, 1986.

    Google Scholar 

  • I. S. Liu. On representations of anisotropic invariants. International Journal of Engineering Science, 20:1099–1109, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Markert, W. Ehlers, and N. Karajan. A general polyconvex strain-energy function for fiber-reinforced materials. Proceedings in Applied Mathematics and Mechanics, 5:245–246, 2005.

    Article  Google Scholar 

  • J.E. Marsden and J.R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, 1983.

    Google Scholar 

  • A. Mielke. Necessary and sufficient conditions for polyconvexity of isotropic functions. Journal of Convex Analysis, 12:291–314, 2005.

    MATH  MathSciNet  Google Scholar 

  • C. B. Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics, 2:25–53, 1952.

    MATH  MathSciNet  Google Scholar 

  • C. B. Morrey. Multiple integrals in the calculus of variations. Springer, 1966.

    Google Scholar 

  • P. Neff. Mathematische Analyse multiplikativer Viskoplastizität. PhD thesis, Technische Universität Darmstadt, Aachen, 2000. Shaker Verlag, ISBN:3-8265-7560-l.

    Google Scholar 

  • F. E. Neumann. Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Teubner, 1885.

    Google Scholar 

  • A. C. Pipkin and R. S. Rivlin. The formulation of constitutive equations in continuum physics. I. Archive for Rational Mechanics and Analysis, 4: 129–144, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Raoult. Non-polyconvexity of the stored energy function of a St.-Venant-Kirchhoff material. Aplikace Matematiky, 6:417–419, 1986.

    MathSciNet  Google Scholar 

  • J. Rychlewski and J. M. Zhang. On representation of tensor functions: a review. Advances in Mechanics, 14:75–94, 1991.

    MathSciNet  Google Scholar 

  • J. Schröder and P. Neff. On the construction of polyconvex anisotropic free energy functions. In C. Miehe, editor, Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pages 171–180. Kluwer Academic Publishers, 2001.

    Google Scholar 

  • J. Schröder and P. Neff. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. International Journal of Solids and Structures, 40:401–445, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and D. Balzani. A variational approach for materially stable anisotropic hyperelasticity. International Journal of Solids and Structures, 42(15):4352–4371, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Anisotropie polyconvex energies on the basis of crystallographic motivated structural tensors. Journal of the Mechanics and Physics of Solids, 56(12):3486–3506, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Schröder, P. Neff, and V. Ebbing. Polyconvex energies for trigonal, tetragonal and cubic symmetry groups. In K. Hackl, editor, Proceedings of the IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials, Bochum 2008, 2009. submitted.

    Google Scholar 

  • G. F. Smith. On a fundamental error in two papers of C.-C. Wang “On representations for isotropic functions, Parts I and II”. Archive for Rational Mechanics and Analysis, 36:161–165, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  • G. F. Smith. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9: 899–916, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  • G.F. Smith and R.S. Rivlin. Stress-deformation relations for anisotropic solids. Archive for Rational Mechanics and Analysis, 1:107–112, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  • G.F. Smith and R.S. Rivlin. The strain-energy function for anisotropic elastic materials. Transactions of the American Mathematical Society, 88:175–193, 1958.

    MATH  MathSciNet  Google Scholar 

  • G.F. Smith, M.M. Smith, and R.S. Rivlin. Integrity bases for a symmetric tensor and a vector, the crystal classes. Archive for Rational Mechanics and Analysis, 12:93–133, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  • A. J. M. Spencer. Isotropic integrity bases for vectors and second-order tensors. Archive for Rational Mechanics and Analysis, 18:51–82, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  • A. J. M. Spencer. Theory of invariants. In A.C. Eringen, editor, Continuum Physics, volume 1, pages 239–353. Academic Press, 1971.

    Google Scholar 

  • D. J. Steigmann. Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Mathematics and Mechanics of Solids, 8: 497–506, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • E.S. Şuhubi. Thermoelastic solids. In A.C. Eringen, editor, Continuum Physics, volume 2. Academic Press, 1975.

    Google Scholar 

  • C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Handbuch der Physik III/3. Springer, 1965.

    Google Scholar 

  • M. Šilhavý. The mechanics and thermodynamics of continuous media. Springer, 1997.

    Google Scholar 

  • C.-C. Wang. On representations for isotropic functions. Part I. Isotropic functions of symmetric tensors and vectors. Archive for Rational Mechanics and Analysis, 33:249–267, 1969a.

    Article  MathSciNet  Google Scholar 

  • C.-C. Wang. On representations for isotropic functions. Part II. Isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Archive for Rational Mechanics and Analysis, 33:268–287, 1969b.

    Article  MathSciNet  Google Scholar 

  • C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 1. Scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:166–197, 1970a.

    Article  MATH  MathSciNet  Google Scholar 

  • C.-C. Wang. A new representation theorem for isotropic functions: An answer to professor G. F. Smith’s Criticism of my papers on representations for isotropic functions. Part 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36:198–223, 1970b.

    Article  MATH  MathSciNet  Google Scholar 

  • C.-C. Wang. Corrigendum to my recent papers on “Representations for isotropic functions”. Archive for Rational Mechanics and Analysis, 43: 392–395, 1971.

    Article  MathSciNet  Google Scholar 

  • H. Weyl. The classical groups, their invariants and representation. Princeton Univ. Press, Princeton, New Jersey, 1946.

    Google Scholar 

  • P. Wriggers. Nonlinear finite element methods. Springer, 2008.

    Google Scholar 

  • H. Xiao. On isotropic extension of anisotropic tensor functions. Zeitschrift für Angewandte Mathematik und Mechanik, 76(4):205–214, 1996.

    Article  MATH  Google Scholar 

  • J.M. Zhang and J. Rychlewski. Structural tensors for anisotropic solids. Archives of Mechanics, 42:267–277, 1990.

    MATH  MathSciNet  Google Scholar 

  • Q.-S. Zheng. Theory of representations for tensor functions — a unified invariant approach to constitutive equations. Applied Mechanics Reviews, 47:545–587, 1994.

    Article  Google Scholar 

  • Q.-S. Zheng and A. J. M. Spencer. Tensors which characterize anisotropics. International Journal of Engineering Science, 31(5):679–693, 1993.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Schröder, J. (2010). Anisotropie polyconvex energies. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics