Skip to main content

From the Flower Bud to the Mature Seed: Timing and Dynamics of Flower and Seed Development in High-Mountain Plants

  • Chapter
  • First Online:
Plants in Alpine Regions

Abstract

High mountains are climatically extreme environments. Short growing seasons and low temperatures are the most important factors limiting plant life at higher altitudes. In the mountains of temperate and cold climates, the period available for growth, flowering and seed production varies with relief and snow accumulation in winter (e.g. Crawford 2008; Galen and Stanton 1991; Kudo 1991, 1992; Galen and Stanton 1995; Kudo and Suzuki 1999; Inouye et al. 2002, 2003; Körner 2003; Ladinig and Wagner 2005; Molau et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhalkatsi M, Wagner J (1997) Comparative embryology of three Gentianaceae species from the central Caucasus and the European Alps. Plant Syst Evol 204:39–48

    Article  Google Scholar 

  • Amen RD (1966) The extent and role of seed dormancy in alpine plants. Quart Rev Biol 4:271–281

    Google Scholar 

  • Anchisi E (1985) Quatrieme contribution à l´étude de la flore valaisanne. Bull Murithienne 102:115–126

    Google Scholar 

  • Arroyo MTK, Armesto JJ, Villagran C (1981) Plant phenological patterns in the high Andean Cordillera of central Chile. J Ecol 69:205–223

    Article  Google Scholar 

  • Arroyo MTK, Armesto J, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Ashman TL, Schoen DJ (1994) How long should flowers live? Nature 371:788–791

    Article  CAS  Google Scholar 

  • Bahn M, Körner C (1987) Vegetation und Phänologie der hochalpinen Gipfelflur des Glungezer in Tirol. Ber Nat med Verein Innsbruck 74:61–80

    Google Scholar 

  • Bannister P, Maegli T, Dickinson KJM, Halloy STP, Knight A, Lord JM, Mark AF, Spencer KL (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256

    Article  PubMed  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391:238–239

    Article  Google Scholar 

  • Blionis GJ, Vokou D (2002) Structural and functional divergence of Campanula spatula subspecies on Mt Olympos (Greece). Plant Syst Evol 232:89–105

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Brysting AK, Gabrielsen TM, Sørlibråten O, Ytrehorn O, Brochmann C (1996) The purple saxifrage, Saxifraga oppositifolia, in Svalbard: two taxa or one? Polar Res 15:93–105

    Article  Google Scholar 

  • Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at different altitudes. Arct Antarct Alp Res 35:411–420

    Article  Google Scholar 

  • Cavieres L, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39:229–236

    Article  Google Scholar 

  • Clark MJ, Husband BC (2007) Plasticity and timing of flower closure in response to pollination in Chamerion angustifolium (Onagraceae). Int J Plant Sci 168:619–625

    Article  Google Scholar 

  • Crawford RMM (2008) Plants at the margin. Ecological limits and climate change. Cambridge University Press, Cambridge/New York/Melbourne

    Book  Google Scholar 

  • Crawford RMM, Chapman HM, Smith LC (1995) Adaptation to variation in growing season length in arctic populations of Saxifraga oppositifolia L. Bot J Scotland 41:177–192

    Article  Google Scholar 

  • Dafni A, Kevan PG, Husband BC (2005) Practical pollination biology. Enviroquest Ltd., Cambridge

    Google Scholar 

  • Diemer M, Körner C (1996) Lifetime leaf carbon balances of herbaceous perennial plants from low and high altitudes in the central Alps. Funct Ecol 10:33–43

    Article  Google Scholar 

  • Diggle PK (1997) Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. Am J Bot 84:154–169

    Article  PubMed  CAS  Google Scholar 

  • Erschbamer B, Kneringer E, Niederfriniger-Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the central Alps. Flora 196:304–312

    Google Scholar 

  • Evanhoe L, Galloway LF (2002) Floral longevity in Campanula americana (Campanulaceae): a comparison of morphological and functional gender phases. Am J Bot 89:587–591

    Article  PubMed  Google Scholar 

  • Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199:70–81

    Article  Google Scholar 

  • Galen C, Stanton M (1991) Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae). Am J Bot 78:978–988

    Article  Google Scholar 

  • Galen C, Stanton M (1995) Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557

    Article  Google Scholar 

  • Giménez-Benavides L, Escudero A, Pérez-García F (2005) Seed germination of high mountain mediterranean species: altitudinal, interpopulation and interannual variability. Ecol Res 20:433–444

    Article  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007a) Local adaption enhances seedling recruitment along an altitudinal gradient in a high mountain mediterranean plant. Ann Bot 99:723–734

    Article  PubMed  Google Scholar 

  • Giménez-Benavides L, Escudero A, Iriondo JM (2007b) Reproductive limits of a late-flowering high-mountain mediterranean plant along an elevational climate gradient. New Phytol 173:367–382

    Article  PubMed  Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity, Ecological studies 113. Springer, Berlin, pp 167–181

    Google Scholar 

  • Grabherr G, Nagy L, Thompson DBA (2003) An outline of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe, Ecological studies 167. Springer, Berlin/Heidelberg, pp 3–12

    Google Scholar 

  • Gugerli F (1997) Hybridization of Saxifraga oppositifolia and S. biflora (Saxifragaceae) in a mixed alpine population. Plant Syst Evol 207:255–272

    Article  Google Scholar 

  • Hegi G (1975) Illustrierte Flora von Mitteleuropa, vol V/3. Paul Parey, Berlin

    Google Scholar 

  • Heide OM (1989) Environmental control of flowering and viviparous proliferation in seminiferous and viviparous Arctic populations of two Poa species. Arct Alp Res 21:305–315

    Article  Google Scholar 

  • Heide OM (1992a) Flowering strategies of the high-arctic and high-alpine snow bed grass species Phippsia algida. Physiol Plant 85:606–610

    Article  Google Scholar 

  • Heide OM (1992b) Experimental control of flowering in Carex bigelowii. Oikos 65:371–376

    Article  Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:347–362

    Article  CAS  Google Scholar 

  • Heide OM (2005) Ecotypic variation among European arctic and alpine populations of Oxyria digyna. Arct Antarc Alp Res 37:233–238

    Article  Google Scholar 

  • Heide OM, Pedersen K, Dahl E (1990) Environmental control of flowering and morphology in the high-arctic Cerastium regelii, and the taxonomic status of C. jenisejense. Nord J Bot 10:141–147

    Article  Google Scholar 

  • Hörandl E, Gutermann W (1994) Populationsstudien an Sippen von Saxifraga sect. Porphyrion (Saxifragaceae) in den Alpen: I. Hybriden von S. biflora und S. oppositifolia. Phyton (Horn) 34:143–167

    Google Scholar 

  • Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed species to snow removal dates in the central Alps: implications for climate warming. Arct Antarc Alp Res 38:99–103

    Article  Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    Article  PubMed  Google Scholar 

  • Inouye D, Morales MA, Dodge GJ (2002) Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 130:543–550

    Article  Google Scholar 

  • Inouye DW, Saavedra F, Lee-Yang W (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). Am J Bot 90:905–910

    Article  PubMed  Google Scholar 

  • Janson J, Reinders MC, Valkering AGM, Vantuyl JM, Keijzer CJ (1994) Pistil exudate production and pollen-tube growth in Lilium longiflorum Thunb. Ann Bot 73:437–446

    Article  Google Scholar 

  • Kaplan K (1995) Saxifragaceae. In: Weber HE (ed) Gustav Hegi – Illustrierte Flora von Mitteleuropa, vol 4/2A. Blackwell, Berlin, pp 130–229

    Google Scholar 

  • Keller F, Körner C (2003) The role of photoperiodism in alpine plant development. Arct Antarc Alp Res 35:361–368

    Article  Google Scholar 

  • Kimball SL, Salisbury FB (1974) Plant development under snow. Bot Gaz 135:147–149

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Oxford, pp 48–69

    Chapter  Google Scholar 

  • Körner C (2011) Coldest places on earth with angiosperm plant life. Alp Botany 121:11–22

    Google Scholar 

  • Körner C, Diemer M (1987) In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct Ecol 1:179–194

    Article  Google Scholar 

  • Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area rations in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418

    Article  Google Scholar 

  • Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arct Alp Res 23:436–443

    Article  Google Scholar 

  • Kudo G (1992) Performance and phenology of alpine herbs along a snow-melting gradient. Ecol Res 7:297–304

    Article  Google Scholar 

  • Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58

    Article  Google Scholar 

  • Kudo G, Suzuki S (1999) Flowering phenology of alpine plant communities along a gradient of snowmelt timing. Polar Biosci 12:100–113

    Google Scholar 

  • Kume A, Nakatsubo T, Bekku Y, Masuzawa T (1999) Ecological significance of different growth forms of purple saxifrage, Saxifraga oppositifolia L., in the High Arctic, Ny-Ålesund, Svalbard. Arct Antarct Alp Res 31:27–33

    Article  Google Scholar 

  • Ladinig U (2005) Reproductive development of Saxifraga-species in a high mountain climate. Doctoral thesis, University Innsbruck

    Google Scholar 

  • Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515

    Article  Google Scholar 

  • Ladinig U, Wagner J (2007) Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Plant Biol 9:683–693

    Article  PubMed  CAS  Google Scholar 

  • Ladinig U, Wagner J (2009) Dynamics of flower development and vegetative shoot growth in the high mountain plant Saxifraga bryoides L. Flora 204:63–73

    Article  Google Scholar 

  • Landolt E (1992) Unsere Alpenflora. Fischer, Stuttgart

    Google Scholar 

  • Larcher W (1980) Klimastreß im Gebirge – Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfälische Akad Wiss 291:49–88

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374

    Google Scholar 

  • Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from the timberline to the nival zone in the Central Alps. Contrib Nat Hist Berne 12:765–782

    Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Larl I (2007) Flower development in high mountain Saxifrages. Doctoral thesis, University Innsbruck

    Google Scholar 

  • Larl I, Wagner J (2006) Timing of reproductive and vegetative development in Saxifraga oppositifolia in an alpine and a subnival climate. Plant Biol 8:155–166

    Article  PubMed  CAS  Google Scholar 

  • Lewis D (1942) The physiology of incompatibility in plants I. The effect of temperature. Proc R Soc Lond B Biol Sci 131:13–26

    Article  Google Scholar 

  • Lundemo S, Totland Ø (2007) Within-population spatial variation in pollinator visitation rates, pollen limitation on seed set, and flower longevity in an alpine species. Acta Oecol 32:262–268

    Article  Google Scholar 

  • Luzar N, Gottsberger G (2001) Flower heliotropism and floral heating of five alpine plant species and the effect on flower visiting in Ranunculus montanus in the Austrian Alps. Arct Antarct Alp Res 33:93–99

    Article  Google Scholar 

  • Makrodimos N, Blionis GJ, Krigas N, Vokou D (2008) Flower morphology, phenology and visitor patterns in an alpine community on Mt Olympos, Greece. Flora 203:449–468

    Article  Google Scholar 

  • Marcante S, Schwienbacher E, Erschbamer B (2009) Genesis of a soil seed bank on a primary succession in the central Alps (Ötztal, Austria). Flora 204:434–444

    Article  Google Scholar 

  • Mark AF (1970) Floral initiation and development in New Zealand alpine plants. N Z J Bot 8:67–75

    Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arct Alp Res 25:391–402

    Article  Google Scholar 

  • Molau U (1996) Climatic impacts on flowering, growth and vigour in an arctic–alpine cushion plant, Diapensia lapponica, under different snow cover regimes. Ecol Bull 45:210–219

    CAS  Google Scholar 

  • Molau U (1997) Phenology and reproductive success in arctic plants: susceptibility to climate change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems, Ecological studies 124. Springer, Berlin/Heidelberg, pp 153–170

    Chapter  Google Scholar 

  • Molau U, Larsson E-L (2000) Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Can J Bot 78:728–747

    Google Scholar 

  • Molau U, Nordenhäll U, Eriksen B (2005) Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. Am J Bot 92:422–431

    Article  PubMed  Google Scholar 

  • Morris WF, Doak DF (1998) Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. Am J Bot 85:784–793

    Article  PubMed  CAS  Google Scholar 

  • Muñoz A, Arroyo MTK (2006) Pollen limitation and spatial variation of reproductive success in the insect-pollinated shrub Chuquiraga oppositifolia (Asteraceae) in the Chilean Andes. Arct Antarct Alp Res 38:608–613

    Article  Google Scholar 

  • Nakhutsrishvili G (1999) The vegetation of Georgia (Caucasus). Braun Blanquetia 15:5–74

    Google Scholar 

  • Neuner G, Braun V, Buchner O, Taschler D (1999) Leaf rosette closure in the alpine rock species Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation. Plant Cell Environ 22:1539–1548

    Article  Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen. Elsevier, München

    Google Scholar 

  • Pasonen HL, Kapyla M, Pulkkinen P (2000) Effects of temperature and pollination site on pollen performance in Betula pendula Roth – evidence for genotype-environment interactions. Theor Appl Genet 100:1108–1112

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life – the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325

    Google Scholar 

  • Pluess A, Schütz W, Stöcklin J (2005) Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species. Oecologia 144:55–61

    Article  PubMed  Google Scholar 

  • Primack R (1978) Variability in New Zealand montane and alpine pollinator assemblages. N Z J Ecol 1:66–73

    Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Annu Rev Ecol Syst 16:15–37

    Article  Google Scholar 

  • Prock S (1990) Symphänologie der Pflanzen eines kalkalpinen Rasens mit besonderer Berücksichtigung der Wachstumsdynamik und Reservestoffspeicherung charakteristischer Arten. Ber Nat-med Verein Innsbruck 77:31–56

    Google Scholar 

  • Prock S, Körner C (1996) A cross-continental comparison of phenology, leaf dynamics and dry matter allocation in arctic and temperate zone herbaceous plants from contrasting altitudes. Ecol Bull 45:93–103

    CAS  Google Scholar 

  • Salisbury FB (1985) Plant adaptations to the light environment. In: Kaurin A, Junttila O, Nilsen J (eds) Plant production in the north. Norwegian University Press, Tromsø, pp 43–61

    Google Scholar 

  • Sandvik S, Totland O (2000) Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 7:201–213

    Google Scholar 

  • Shimono Y, Kudo G (2005) Comparisons of germination traits of alpine plants between fellfield and snowbed habitats. Ecol Res 20:189–197

    Article  Google Scholar 

  • Sørensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Medd Grønland 125:1–307

    Google Scholar 

  • Steinacher G, Wagner J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora 205:376–387

    Article  Google Scholar 

  • Steinacher G, Wagner J (2011) Effect of temperature on the progamic phase in high-mountain plants. Plant Biology, in press

    Google Scholar 

  • Stenström M, Molau U (1992) Reproductive ecology of Saxifraga oppositifolia: phenology, mating system, and reproductive success. Arct Alp Res 24:337–343

    Article  Google Scholar 

  • Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biol 3:44–54

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746

    Article  Google Scholar 

  • Theurillat J-P, Schlüssel P (2000) Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisan Alps (Switzerland). Phytocoenologia 30:439–456

    Google Scholar 

  • Venn SE, Morgan JW (2009) Patterns in alpine seedling emergence and establishment across a stress gradient of mountain summits in south-eastern Australia. Plant Ecol Div 1:5–16

    Article  Google Scholar 

  • Wagner J, Mitterhofer E (1998) Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years. Bot Acta 111:159–166

    Google Scholar 

  • Wagner J, Reichegger B (1997) Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates. Arct Alp Res 29:291–299

    Article  Google Scholar 

  • Wagner J, Tengg G (1993) Phänoembryologie der Hochgebirgspflanzen Saxifraga oppositifolia und Cerastium uniflorum. Flora 188:203–212

    Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243:117–128

    Article  PubMed  Google Scholar 

  • Wenk EH, Dawson TE (2007) Interspecific differences in seed germination, establishment, and early growth in relation to preferred soil type in an alpine community. Arct Antarct Alp Res 39:165–176

    Article  Google Scholar 

  • Westoby M, Leishman M, Lord J (1997) Comparative ecology of seed size and dispersal. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories – ecology, phylogeny and evolution. Cambridge University Press, Cambridge, pp 143–162

    Google Scholar 

  • Zimmermann W (1975) Ranunculaceae. In: Rechinger KH, Damboldt J (eds) Gustav Hegi – Illustrierte Flora von Mitteleuropa, vol 3/3. Paul Parey, Berlin, pp 53–341

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Austrian Science Foundation (FWF-projects P15595-B3 “Diversity of sexual reproduction in high-mountain plants” and P18398-BO3 “Pollen tube growth and pistil receptivity of high-mountain plants under extreme climatic conditions”) to J. Wagner. We thank S. Erler and S. Widmann for providing data, and W. Sakai for SEM preparation. We further thank the Patscherkofelbahn and the Stubai Gletscherbahn for free transportation by cable-car.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Wagner, J., Ladinig, U., Steinacher, G., Larl, I. (2012). From the Flower Bud to the Mature Seed: Timing and Dynamics of Flower and Seed Development in High-Mountain Plants. In: Lütz, C. (eds) Plants in Alpine Regions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0136-0_10

Download citation

Publish with us

Policies and ethics