Skip to main content

Perimeter: A Network-Layer Attack on the Anonymity of Cryptocurrencies

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12674))

Included in the following conference series:

Abstract

Cryptocurrencies are widely used today for anonymous transactions. Such currencies rely on a peer-to-peer network where users can broadcast transactions containing their pseudonyms and ask for approval. Previous research has shown that application-level eavesdroppers, meaning nodes connected to a large portion of the Bitcoin peer-to-peer network, are able to deanonymize multiple users by tracing back the source of transactions. Yet, such attacks are highly visible as the attacker needs to maintain thousands of outbound connections. Moreover, they can be mitigated by purely application-layer countermeasures.

This paper presents a stealthier and harder-to-mitigate attack exploiting the interactions between the networking and application layers. Particularly, the adversary combines her access over Internet infrastructure with application-layer information to deanonymize transactions. We show that this attack, namely Perimeter, is practical in today’s Internet, achieves high accuracy in Bitcoin, and generalizes to encrypted cryptocurrencies e.g., Ethereum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similar techniques could be applied to Ethereum.

  2. 2.

    We mention the modifications that are relevant to our work.

  3. 3.

    Such an attack is very harmful to the victim because an attacker can often link all other transactions the victim made to the deanonymized one [39].

  4. 4.

    Finding the IP of a person is practical as it is revealed every time this person visits a website or an application e.g., skype call.

  5. 5.

    Ethereum facilitates connecting to a client using its IP (i.e., discovery v4 UDP packet).

  6. 6.

    We do not allow incoming connections to prevent attacks from light clients during the experiment.

References

  1. About: What is RIPE Atlas? https://atlas.ripe.net/landing/about/

  2. Announcing Daily RIPE Atlas data archives. https://labs.ripe.net/Members/petros_gigis/announcing-daily-ripe-atlas-data-archives

  3. Bitcoin Core diffusion delay. https://github.com/bitcoin/bitcoin/blob/da4cbb7927497ca3261c1504c3b85dd3f5800673/src/net_processing.cpp#L3813

  4. Fast Internet Bitcoin Relay Engine. https://www.falcon-net.org

  5. FIBRE. https://bitcoinfibre.org/

  6. Go Ethereum: Official Go implementation of the Ethereum protocol. https://github.com/ethereum/go-ethereum

  7. GoPacket. https://github.com/google/gopacket

  8. p2p: supplying and using asmap to improve IP bucketing in addrman. https://github.com/bitcoin/bitcoin/pull/16702

  9. RFC 1267 - Border Gateway Protocol 3 (BGP-3). https://tools.ietf.org/html/rfc1267

  10. RIPE RIS Raw Data. https://www.ripe.net/data-tools/stats/ris/ris-raw-data

  11. The RLPx Transport Protocol. https://github.com/ethereum/devp2p/blob/master/rlpx.md

  12. Ethereum Mainnet Statistics (2020). https://www.ethernodes.org

  13. GLOBAL BITCOIN NODES DISTRIBUTION (2020). https://bitnodes.io/

  14. Propagation of Transactions and Blocks (2020). https://dsn.tm.kit.edu/bitcoin/#propagation

  15. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy of a large european ixp. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012, pp. 163–174. ACM (2012). https://doi.org/10.1145/2342356.2342393. https://doi.org/10.1145/2342356.2342393

  16. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

    Chapter  Google Scholar 

  17. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on cryptocurrencies. In: S&P ’17 (May). https://doi.org/10.1109/SP.2017.29

  18. Apostolaki, M., Marti, G., Müller, J., Vanbever, L.: Sabre: protecting bitcoin against routing attacks. In: Proceedings of the 26th Annual Network and Distributed System Security Symposium, pp. 02A1. Internet Society (2019)

    Google Scholar 

  19. Birge-Lee, H., Sun, Y., Edmundson, A., Rexford, J., Mittal, P.: Bamboozling certificate authorities with \(\{\)BGP\(\}\). In: 27th USENIX Security Symposium (USENIX Security 18), pp. 833–849 (2018)

    Google Scholar 

  20. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin p2p network. In: CCS 2014

    Google Scholar 

  21. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE Symposium on Security and Privacy, pp. 122–134. IEEE (2015)

    Google Scholar 

  22. Biryukov, A., Tikhomirov, S.: Deanonymization and linkability of cryptocurrency transactions based on network analysis. In: EuroS&P 2019 (2019)

    Google Scholar 

  23. Bojja Venkatakrishnan, S., Fanti, G., Viswanath, P.: Dandelion: Redesigning the bitcoin network for anonymity. POMACS (2017)

    Google Scholar 

  24. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  25. The CAIDA AS relationship dataset - 20191001. http://data.caida.org/datasets/as-relationships/serial-1/

  26. The caida ixps dataset - 201910. http://data.caida.org/datasets/ixps/ix-asns_201910.jsonl. Accessed 12 Mar 2020

  27. Extance, A.: The future of cryptocurrencies: bitcoin and beyond. Nature News 526(7571), 21 (2015)

    Article  Google Scholar 

  28. Fanti, G., Venkatakrishnan, S.B., Bakshi, S., Denby, B., Bhargava, S., Miller, A., Viswanath, P.: Dandelion++: lightweight cryptocurrency networking with formal anonymity guarantees. POMACS (2018)

    Google Scholar 

  29. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in bitcoin and ethereum networks. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 439–457. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_24

  30. Goldberg, S., Schapira, M., Hummon, P., Rexford, J.: How secure are secure interdomain routing protocols. ACM SIGCOMM Comput. Commun. Rev. 40(4), 87–98 (2010)

    Article  Google Scholar 

  31. Hearn, M., Corallo, M.: Connection bloom filtering. bitcoin improvement proposal 37 (2012)

    Google Scholar 

  32. Jepsen, T., Alvarez, D., Foster, N., Kim, C., Lee, J., Moshref, M., Soulé, R.: Fast string searching on pisa. In: Proceedings of the 2019 ACM Symposium on SDN Research, pp. 21–28 (2019)

    Google Scholar 

  33. Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in bitcoin-like digital cash systems. IEEE Commun. Surv. Tutorials 20(3), 2543–2585 (2018)

    Article  Google Scholar 

  34. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_30

    Chapter  Google Scholar 

  35. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  36. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discovery Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  37. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: As relationships, customer cones, and validation. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 243–256 (2013)

    Google Scholar 

  38. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.: BITE: Bitcoin lightweight client privacy using trusted execution

    Google Scholar 

  39. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140 (2013)

    Google Scholar 

  40. Neudecker, T., Hartenstein, H.: Could network information facilitate address clustering in bitcoin? In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) FC 2017. LNCS, vol. 10323, pp. 155–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_9

    Chapter  Google Scholar 

  41. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin transaction graph. Future Internet 5(2), 237–250 (2013)

    Article  Google Scholar 

  42. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security and Privacy in Social Networks, pp. 197–223. Springer (2013)

    Google Scholar 

  43. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  44. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin mixing for bitcoin. In: European Symposium on Research in Computer Security, pp. 345–364. Springer (2014)

    Google Scholar 

  45. Saad, M., Cook, V., Nguyen, L., Thai, M.T., Mohaisen, A.: Partitioning attacks on bitcoin: Colliding space, time and logic. Technical report (2019)

    Google Scholar 

  46. Sun, Y., Apostolaki, M., Birge-Lee, H., Vanbever, L., Rexford, J., Chiang, M., Mittal, P.: Securing internet applications from routing attacks. arXiv preprint arXiv:2004.09063 (2020)

  47. Sun, Y., Edmundson, A., Vanbever, L., Li, O., Rexford, J., Chiang, M., Mittal, P.: RAPTOR: routing attacks on privacy in tor. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 271–286 (2015)

    Google Scholar 

  48. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning attack against bitcoin peer-to-peer network. In: S&P 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Apostolaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apostolaki, M., Maire, C., Vanbever, L. (2021). Perimeter: A Network-Layer Attack on the Anonymity of Cryptocurrencies. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64322-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64322-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64321-1

  • Online ISBN: 978-3-662-64322-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics