Skip to main content

The Technology History of Virtual Product Creation

  • Chapter
  • First Online:
Virtual Product Creation in Industry
  • 1814 Accesses

Abstract

Before geometries were modeled in Computer-Aided Design (CAD) software tools, geometries were drawn manually on paper. Since the tradition of manual drawings dates back several hundreds of years, it has evolved and improved over time. In order to understand why such optimized practices have been replaced by computer-aided tools, one has to understand the advantages of using CAD over the traditional methods. In addition, this chapter provides insight to the history of digital product validation and verification. The emerging path of Computer-Aided Engineering (CAE) is explained. Due to the sharply increasing need to store, exchange and manage such CAD and CAE models as well as other important product related information sets this chapter finally introduces the historic pathway of the new technology discipline Product Data Management (PDM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krull F (1994) The origin of computer graphics within General Motors. IEEE Annals Hist Comput 16(3):40. https://doi.org/10.1109/MAHC.1994.298419

    Article  Google Scholar 

  2. Rake W (1973) Computer-Aided Design and Drafting (CADD): an advanced designer's tool. SAE Technical Paper 730934

    Google Scholar 

  3. Whitney DE (1993) History of CAD/CAM at Ford

    Google Scholar 

  4. Weisberg DE (2008) The engineering design revolution. the people, companies and computer systems that changed forever the practice of engineering

    Google Scholar 

  5. Spur G, Krause FL, Harder JJ (1982) The Compaq solid modeler. In: Computers in mechanical engineering, New York, pp 44–53

    Google Scholar 

  6. Whitney DE (1991) Visits to Prof Kimura's CAD research Lab July 5 and July 19 for discussions about product realization, IMS, and Product Development Cycles

    Google Scholar 

  7. Kimura F (2009) Geomap-III: designing solids with free-form surfaces. Comput Graph 4(6):58–72

    Google Scholar 

  8. Krause JL (1997) Virtual clay modeling. In: Pratt MJ, Sriram RD, Wozny MJ (eds) Product modeling for computer integrated design and manufacture. Chapman & Hall, London, pp 162–175

    Chapter  Google Scholar 

  9. Reintjes JF (1991) Numerical control. Making a new technology. Oxford series on advanced manufacturing, vol 9. Oxford University Press, New York

    Google Scholar 

  10. Shah JJ, Mäntylä M (1995) Parametric and feature-based CAD CAM. Concepts, techniques, and applications. a Wiley-Interscience publication. Wiley, New York

    Google Scholar 

  11. Bernardi A, Klauck C, Legleitner R, Schulte M, Stark R (1992) Feature based integration of CAD and CAPP. In: Krause F, Ruland D, Jansen H (eds) Informatik Aktuell. CAD’92 Neue Konzepte zur Realisierung anwendungsorientierter CAD-Systeme, Berlin, pp 295–311

    Google Scholar 

  12. Rieger E (1994) Semantikorientierte Features zur kontinuierlichen Unterstützung der Produktgestaltung. Produktionstechnik - Berlin, vol 158. Hanser, München, Berlin

    Google Scholar 

  13. Kent JR, Carlson WE, Parent RE (1992) Shape transformation for polyhedral objects. In: Proceedings of the 19th annual conference on computer graphics and interactive techniques. ACM, New York, NY

    Google Scholar 

  14. Brill M (2006) Parametrische Konstruktion mit CATIA V5. Methoden und Strategien für den Fahrzeugbau. Hanser, München [u.a.]

    Google Scholar 

  15. Krause F, Jansen H (1993) Luth N (1993) Neue Methoden der automatischen Zeichnungsinterpretation. Zeitschrift für wirtschaftliche Fertigung und Automatisierung 88(12):589–592

    Article  Google Scholar 

  16. Spur G, Jansen H, Krause F (1986) Automatische Digitalisierung und Interpretation technischer Zeichnungen für CAD-Prozesse. ZWF CIM 81 (1986) 5:235–241

    Google Scholar 

  17. Spur G, Jansen H, Krause F (1986) Verarbeitungstechniken zur automatischen Zeichnungserfassung für CAD-Prozesse. ZWF CIM 81(5):235–241, 9:460–466

    Google Scholar 

  18. Luth N (1997) Eine Methode zur automatischen Strukturinterpretation in digitalisierten technischen Zeichnungen. Berichte aus dem Produktionstechnischen Zentrum Berlin. IPK, Berlin, Berlin

    Google Scholar 

  19. Ali A, Brebbia CA (2006) Digital architecture and construction. WIT transactions on the built environment, vol 90. WIT, Southampton

    Google Scholar 

  20. Aiaa guide for the verification and validation of computational fluid dynamics simulations. Aiaa, [S.l.]

    Google Scholar 

  21. Author Unknown (1979) Schlesinger terminology for model credibility. In: Simulation, vol 32, No 3, pp 103–104

    Google Scholar 

  22. American Society for Quality (ASQC) (1978) Quality systems terminology (A3-1978)

    Google Scholar 

  23. ASME (2006) Guide for verification and validation in computational solid mechanics

    Google Scholar 

  24. IEEE (1990) Standard glossary of software engineering terminology (Std 610.12-1990)

    Google Scholar 

  25. Kapurch SJ (2007) NASA systems engineering handbook. Retrieved from https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook.pdf. Accessed on 07 Nov 2017

  26. Nance RE (2002) RGS Perspectives on the evolution of simulation. Oper Res 50(1):161–172

    Google Scholar 

  27. Rossetti MD, Hill RR, Johansson B, Dunkin A, Ingalls RG, Goldsman D, Nance RE, Wilson JR (2009) A brief history of simulation. In: Dunkin A (ed) Winter simulation conference. Winter simulation conference, s.l, pp 310–313

    Google Scholar 

  28. Nance RE (1993) A history of discrete event simulation programming languages. The second ACM SIGPLAN conference on History of programming languages. ACM, New York, NY, pp 149–175

    Chapter  Google Scholar 

  29. Robert PE, Saaris GR (1972) Review and evaluation of a three-dimensional lifting potential flow computational method for arbitrary configurations. Boeing Co.

    Google Scholar 

  30. Orlandea N, Chace MA, Calahan DA (1977) A Sparsity-oriented approach to the dynamic analysis and design of mechanical systems. J Eng Industry

    Google Scholar 

  31. ISO Electronic document management -- Vocabulary -- Part 1: Electronic document imaging (12651-1:2012)

    Google Scholar 

  32. Author Unknown (1990) UTAH software firm forms new marketing company. Deseret News

    Google Scholar 

  33. Klaproth F (1998) Lossau N. The document management system Saros Mezzanine and the new product AGORA as key component in a digital library architecture at Göttingen University Library 1513:685–687

    Google Scholar 

  34. Delphi Consulting Group (1995) In its newest market research service, document management: the paperless revolution. Delphi Finds Three Vendors Dominate Market

    Google Scholar 

  35. Chen SCM (1994) The document masters: PC DOCS, Saros, and SoftSolutions. PC Magazine, pp 316–317

    Google Scholar 

  36. CADAZZ (2004) CAD software - history of CAD CAM. http://www.cadazz.com/cad-software-history.htm

  37. IBM (1997) IBM ProductManager Version 3 Release 2

    Google Scholar 

  38. Sendler U (2009) Das PLM-Kompendium. Referenzbuch des Produkt-Lebenszyklus-Managements. Xpert.press, Springer, Berlin, Heidelberg

    Book  Google Scholar 

  39. Baan Development B.V. (1998) BAAN IVc4. BaanPDM 5.1.3 DBA Guide. Retrieved online from: http://baansupport.com/docs/baan/U7175AUS.pdf

  40. Schmidt S, Wierschin H (1998) Global Engineering auf der Basis weltweit verteilter Daten und Dokumente. In: Industrie-management, 10/1998

    Google Scholar 

  41. Eigner M, Stelzer R (2013) Product lifecycle management. Ein Leitfaden für Product Development und Life Cycle Management, 2nd edn. VDI. Springer, Dordrecht

    Google Scholar 

  42. Saaksvuori A, Immonen A (2008) Product lifecycle management, 3rd edn. Springer-Verlag, s.l

    Google Scholar 

  43. Feldhusen J, Gebhardt B (2008) Product Lifecycle Management für die Praxis. Springer, Berlin, Ein Leitfaden zur modularen Einführung, Umsetzung und Anwendung

    Google Scholar 

  44. Stark J (2009) Product lifecycle management. 21st Century paradigm for product realisation, 1st edn. Springer, London Limited, s.l

    Google Scholar 

  45. Grieves M (2006) Product lifecycle management. Driving the next generation of lean thinking; [how GE, P&G, Ford, Toyota, and other leading companies achieved dramatic increases in productivity and profit]. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Stark .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stark, R. (2022). The Technology History of Virtual Product Creation. In: Virtual Product Creation in Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64301-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64301-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64299-3

  • Online ISBN: 978-3-662-64301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics