Skip to main content

Systematic Design of Body Concepts Regarding Mini-Mal Environmental Impacts in an Early Concept Phase

  • Conference paper
  • First Online:
Technologies for economic and functional lightweight design

Abstract

For internal combustion engine vehicles, the use stage dominates the life cycle emissions. In comparison, the life cycle emissions of battery electric vehicles highly depend on the electricity mix. With consideration of an European electricity mix the life cycle emissions split approximately equally between the production and use stage. Approximately 46% of these emissions is caused by the battery production. But the absolute and relative share of emissions from the vehicle production increase as well. Thus both stages have to be considered for the environmental assessment of body parts. Therefore the environmental impact of different material concepts as well as production and joining technologies are in focus of the development. A decision regarding environmentally optimized body concepts has to be made in the concept phase. A first approach provides mass indices from Ashby 1999. So, concepts made out of different materials can be developed in a given design space. These concepts are evaluated using a simplified life cycle assessment, which considers different body designs, mobility concepts and markets (electricity mixes). It can be shown that there is a large variance of greenhouse gas emissions for a given lightweight design potential. Hence, an optimization procedure to find concepts with the lowest environmental impacts is needed. In this paper a first approach for an optimization procedure concerning ecological aspects of body parts is described and demonstrated with an example application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit: Klimaschutz in Zahlen (2018). Accessed 17 Jan 2020

    Google Scholar 

  2. Cerdas, F., Egede, P., Herrmann, C.: LCA of electromobility. In: Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I. (eds.) Life Cycle Assessment: Theory and Practice, pp. 669–693. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  3. Kreyenberg, D.: Fahrzeugantriebe für die Elektromobilität: Total Cost of Ownership, Energieeffizienz, CO2-Emissionen und Kundennutzen, Dissertation (2016)

    Google Scholar 

  4. Dieter, G.E.: Materials Selection and Design, 10th edn. ASM International, Materials Park, Ohio (1997)

    Book  Google Scholar 

  5. Kaluza, A., Kleemann, S., Broch, F., Herrmann, C., Vietor, T.: Analyzing decision-making in automotive design towards life cycle engineering for hybrid lightweight components. Procedia CIRP 50, 825–830 (2016). https://doi.org/10.1016/j.procir.2016.05.029

    Article  Google Scholar 

  6. DIN EN ISO 14040:2009-11, Umweltmanagement_-Ökobilanz_-Grundsätze und Rahmenbedingungen (ISO_14040:2006); Deutsche und Englische Fassung EN_ISO_14040:2006 (2009)

    Google Scholar 

  7. Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., Skerlos, S.: Life cycle engineering of lightweight structures 67(2), 651–672 (2018). https://doi.org/10.1016/j.cirp.2018.05.008

  8. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th edn. München, Wien, Hanser. www.hanser-fachbuch.de/buch/Integrierte+Produktentwicklung/9783446440890

  9. Ashby, M.F.: Materials and the Environment: Eco-informed Material Choice, 2nd edn. Elsevier Butterworth-Heinemann, Amsterdam (2013)

    Google Scholar 

  10. Ashby, M.F.: Materials Selection in Mechanical Design, 2nd edn. Elsevier Butterworth-Heinemann, Amsterdam (2004)

    Google Scholar 

  11. Kampe, S.: Incorporating green engineering in materials selection and design. In ASEE Annual Conference Proceedings (2001)

    Google Scholar 

  12. Ermolaeva, N.S., Castro, M.B., Kandachar, P.V.: Materials selection for an automotive structure by integrating structural optimization with environmental impact assessment. Mater Des 25(8), 689–698 (2004). https://doi.org/10.1016/j.matdes.2004.02.021

    Article  Google Scholar 

  13. Giudice, F., La Rosa, G., Risitano, A.: Materials selection in the life-cycle design process: a method to integrate mechanical and environmental performances in optimal choice. Mater. Des. 26(1), 9–20 (2005). https://doi.org/10.1016/j.matdes.2004.04.006

    Article  Google Scholar 

  14. Ribeiro, I., Peças, P., Silva, A., Henriques, E.: Life cycle engineering methodology applied to material selection, a fender case study. J. Cleaner Prod. 16(17), 1887–1899 (2008). https://doi.org/10.1016/j.jclepro.2008.01.002

    Article  Google Scholar 

  15. Wanner, A.: Minimum-weight materials selection for limited available space. Mater. Des. 31(6), 2834–2839 (2010). https://doi.org/10.1016/j.matdes.2009.12.052

    Article  Google Scholar 

  16. Mayyas, A.T., Qattawi, A., Mayyas, A.R., Omar, M.A.: Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 39(1), 412–425 (2012). https://doi.org/10.1016/j.energy.2011.12.033

    Article  Google Scholar 

  17. Mayyas, A.T., Qattawi, A., Mayyas, A.R., Omar, M.: Quantifiable measures of sustainability: a case study of materials selection for eco-lightweight auto-bodies. J. Cleaner Prod. 40, 177–189 (2013). https://doi.org/10.1016/j.jclepro.2012.08.039

    Article  Google Scholar 

  18. Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., Zenkert, D.: A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Mater. Des. 83, 704–712 (2015). https://doi.org/10.1016/j.matdes.2015.06.079

    Article  Google Scholar 

  19. Kleemann, S., Türck, E., Vietor, T., D. C. M.: 1.-1. 2. International design conference-design 2016, Towards knowledge based engineering for multi-material design (2016). https://doi.org/10.24355/dbbs.084-201704031138

  20. Kleemann, S., Inkermann, D., Bader, B., Türck, E., Vietor, T.: Semi-formal approach to structure and access knowledge for multi-material-design (2017). https://doi.org/10.24355/dbbs.084-201708301114

  21. Kaluza, A., Kleemann, S., Fröhlich, T., Herrmann, C., Vietor, T.: Concurrent design & life cycle engineering in automotive lightweight component development. Procedia CIRP 66, 16–21 (2017). https://doi.org/10.1016/j.procir.2017.03.293

    Article  Google Scholar 

  22. Fröhlich, T., Kleemann, S., Türck, E., Vietor, T.: Multi-criteria analysis of multi-material lightweight components on a conceptual level of detail (2017). https://doi.org/10.24355/dbbs.084-201709070942

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Reimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reimer, L., Jois, P.K., Henkelmann, H., Meschke, J., Vietor, T., Herrmann, C. (2021). Systematic Design of Body Concepts Regarding Mini-Mal Environmental Impacts in an Early Concept Phase. In: Dröder, K., Vietor, T. (eds) Technologies for economic and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62924-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62924-6_9

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62923-9

  • Online ISBN: 978-3-662-62924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics