Skip to main content

Methodology for Assessing the Environmental Impact of Emerging Materials

  • Conference paper
  • First Online:
Technologies for economic and functional lightweight design

Abstract

In order to reduce environmental impacts of product systems through material research and development, to identify mitigation potential, and to avoid problem shifting, information about the environmental impact of emerging materials is needed at an early stage. This information can support decisions on material selection as well as manufacturing process optimization. The goal is to reduce the impact of an emerging material so that it is lower than the impact of an established material. We propose a methodology to address this need. It consists of four steps: 1) reference LCA, 2) forecast LCA of emerging material, 3) scaling and 4) comparison. We apply the methodology to automotive seat cover materials such as bovine leather, faux leather and a fictitious flax-based material, where the production of the latter shares some production steps with leather. The results indicate how much environmental space the to-be-developed manufacturing process of the fictitious material can take up before it surpasses that of leather and faux leather. This way, the methodology can support the material research and development process in identifying and creating alternative materials with a lower environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allwood, J.M., Ashby, M.F., Gutowski, T.G., Worrell, E.: Material efficiency: a white paper. Resour. Conserv. Recycl. 55(3), 362–381 (2011)

    Article  Google Scholar 

  2. Hawkins, T.R., Singh, B., Majeau-Bettez, G., Strømman, A.H.: Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 17(1), 53–64 (2013)

    Article  Google Scholar 

  3. Helmers, E., Dietz, J., Hartard, S.: Electric car life cycle assessment based on real-world mileage and the electric conversion scenario. Int. J. Life Cycle Assess. 22(1), 15–30 (2017)

    Article  Google Scholar 

  4. Ashby, M.: Materials and the Environment: Eco-informed Material Choice, 2nd edn. Elsevier/Butterworth-Heinemann (2012). https://www.elsevier.com/books/materials-and-the-environment/ashby/978-0-12-385971-6

  5. Caduff, M., Huijbregts, M.A.J., Althaus, H.J., Hendriks, A.J.: Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments. Environ. Sci. Technol. 45(2), 751–754 (2011)

    Article  Google Scholar 

  6. Villares, M., Işıldar, A., van der Giesen, C., Guinée, J.: Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int. J. Life Cycle Assess. 22(10), 1618–1633 (2017)

    Article  Google Scholar 

  7. Piccinno, F., Hischier, R., Seeger, S., Som, C.: Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J. Clean. Prod. 174, 283–295 (2018)

    Article  Google Scholar 

  8. Buyle, M., Audenaert, A., Billen, P., Boonen, K., Van Passel, S.: The future of ex-ante LCA? Lessons learned and practical recommendations. Sustainability 11(19), 1–24 (2019)

    Article  Google Scholar 

  9. Ashby, M., Johnson, K.: The art of materials selection. Mater. Today 6(12), 24–35 (2003)

    Google Scholar 

  10. Ashby, M. F., Miller, A., Rutter, F., Seymour, C., Wegst, U. G. K.: The CES Eco Selector – Background Reading. Design, (2009). https://www.researchgate.net/publication/268357513_The_CES_Eco_Selector_-_Background_Reading

  11. Sun, M., Rydh, C.J., Kaebernick, H.: Material grouping for simplified product life cycle assessment. J. Sustain. Prod. Des. 3(1/2), 45–58 (2004)

    Article  Google Scholar 

  12. Ribeiro, I., Peças, P., Silva, A., Henriques, E.: Life cycle engineering methodology applied to material selection, a fender case study. J. Clean. Prod. 16(17), 1887–1899 (2008)

    Article  Google Scholar 

  13. Qiu, L.M., Sun, L.F., Liu, X.J., Zhang, S.Y.: Material selection combined with optimal structural design for mechanical parts. J. Zhejiang Univ. Sci. A 14(6), 383–392 (2013)

    Article  Google Scholar 

  14. Broeren, M.L.M., Molenveld, K., van den Oever, M.J.A., Patel, M.K., Worrell, E., Shen, L.: Early-stage sustainability assessment to assist with material selection: a case study for biobased printer panels. J. Clean. Prod. 135, 30–41 (2016)

    Article  Google Scholar 

  15. Hallstedt, S.I., Isaksson, O.: Material criticality assessment in early phases of sustainable product development. J. Clean. Prod. 161, 40–52 (2017)

    Article  Google Scholar 

  16. Kappenthuler, S., Seeger, S.: From resources to research—a framework for identification and prioritization of materials research for sustainable construction. Mater. Today Sustain, 100009 (2019)

    Google Scholar 

  17. Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I.: Life Cycle Assessment ‒ Theory and Practice, 1st edn. Springer, Copenhagen (2018)

    Book  Google Scholar 

  18. DIN EN ISO. DIN EN ISO 14040 ‒ Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen (2006)

    Google Scholar 

  19. Cox, B., Mutel, C.L., Bauer, C., Mendoza Beltran, A., van Vuuren, D.P.: Uncertain environmental footprint of current and future battery electric vehicles. Environ. Sci. Technol. 52(8), 4989–4995 (2018)

    Google Scholar 

  20. Thonemann, N., Pizzol, M.: Consequential life cycle assessment of carbon capture and utilization technologies within the chemical industry. Energy Environ. Sci. 12(7), 2253–2263 (2019)

    Article  Google Scholar 

  21. Padey, P., Girard, R., Le Boulch, D., Blanc, I.: From LCAs to simplified models: a generic methodology applied to wind power electricity. Environ. Sci. Technol. 47(3), 1231–1238 (2013)

    Article  Google Scholar 

  22. Di Lullo, G., Gemechu, E., Oni, A.O., Kumar, A.: Extending sensitivity analysis using regression to effectively disseminate life cycle assessment results. Int. J. Life Cycle Assess. 25, 222–239 (2020)

    Google Scholar 

  23. Cucurachi, S., Van Der Giesen, C., Guinée, J.: Ex-ante LCA of emerging technologies. Procedia CIRP 69(May), 463–468 (2018)

    Article  Google Scholar 

  24. Arvidsson, R., et al.: Environmental assessment of emerging technologies: recommendations for prospective LCA. J. Ind. Ecol. 22(6), 1286–1294 (2018)

    Article  Google Scholar 

  25. Moni, S.M., Mahmud, R., High, K., Carbajales-Dale, M.: Life cycle assessment of emerging technologies: a review. J. Ind. Ecol. 24(1), 52–63 (2020)

    Google Scholar 

  26. Thonemann, N., Schulte, A., Maga, D.: How to conduct prospective life cycle assessment for emerging technologies? a systematic review and methodological guidance. no. Lcc. 12(3), 1192 (2020)

    Google Scholar 

  27. Simon, B., Bachtin, K., Kiliç, A., Amor, B., Weil, M.: Proposal of a framework for scale-up life cycle inventory: a case of nanofibers for lithium iron phosphate cathode applications. Integr. Environ. Assess. Manag. 12(3), 465–477 (2016)

    Article  Google Scholar 

  28. Gavankar, S., Anderson, S., Keller, A.A.: Critical components of uncertainty communication in life cycle assessments of emerging technologies: nanotechnology as a case study. J. Ind. Ecol. 19(3), 468–479 (2015)

    Article  Google Scholar 

  29. Wender, B.A., Seager, T.P.: Towards prospective life cycle assessment: Single wall carbon nanotubes for lithium-ion batteries. In: Proceedings 2011 IEEE International Symposium on Sustainable Systems and Technology ISSST 2011, pp. 1–4 (2011)

    Google Scholar 

  30. Blanco, C.F., et al.: Assessing the sustainability of emerging technologies: a probabilistic LCA method applied to advanced photovoltaics. J. Clean. Prod. 259, 120968 (2020)

    Google Scholar 

  31. De Rosa-Giglio, P., A. Fontanella, G. Gonzalez-Quijano, I. Ioannidis, B. Nucci, and F. Brugnoli. Product Environmental Footprint Category Rules ‒ Leather (2019)

    Google Scholar 

  32. Nayak, R., Nguyen, L. V. T., Panwar, T., Jajpura, L.: Sustainable technologies and processes adapted by fashion brands. Elsevier Ltd (2020). https://www.sciencedirect.com/book/9780081028674/sustainable-technologies-for-fashion-and-textiles

  33. Notarnicola, B., et al.: Life cycle assessment of Italian and Spanish bovine leather production systems. Afinidad 68(553), 167–180 (2011)

    Google Scholar 

  34. van der Giesen, C., Cucurachi, S., Guinée, J., Kramer, G. J., Tukker, A.: A critical view on the current application of LCA for new technologies and recommendations for improved practice. J. Clean. Prod. 259, 120904 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schäfer, M., Gottschling, M., Cerdas, F., Herrmann, C. (2021). Methodology for Assessing the Environmental Impact of Emerging Materials. In: Dröder, K., Vietor, T. (eds) Technologies for economic and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62924-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62924-6_8

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62923-9

  • Online ISBN: 978-3-662-62924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics