Skip to main content

Biomimetic Soft Robotic Peristaltic Pumping System for Coolant Liquid Transport

  • Conference paper
  • First Online:
Technologies for economic and functional lightweight design

Abstract

In nature and technology, liquids are transported and distributed in a directed manner via pumping systems. Technical pumps often show signs of wear due to abrasion on moving parts, erosion and liquid contamination, which can lead to damage and unwanted noise. Innovative pump systems for electro mobility applications should have particularly low noise emission. In the course of evolution, various solutions have emerged in nature and can serve as a source of inspiration for the development of biomimetic pumping systems. In the last decade, the development of various biomimetic peristaltic systems highlight this pronounced biomimetic potential. These systems are based on principles behind bowel and esophageal peristalsis and incorporated within soft robots and medical devices. The main goal of this study was the biomimetic implementation of peristalsis into a flexible, silent, robust, energy efficient, space-saving and low cost technical application for the usage in combustion engines, electric engines and cooling systems. The biomimetic pump of the present study is based on the esophageal peristalsis and enables an easy, quiet and safe transport of a variety of Newtonian and non-Newtonian fluids with variable viscosities. The characterization of individual actuators as well as the entire peristaltic pump system in terms of closing rate and volume flow proved the influence of the actuator frequency and different peristaltic actuation patterns on the generated flow rate. The results show that the biomimetic flexible and elastic self-priming peristaltic pump based on silicone achieves sufficient flow rates of more than 250 l/h and thus offers an excellent alternative to conventional technical pumps in the field of electro mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nesbitt, B.: When is a tube not a tube?: when it’s a pump! World Pumps 2004(448), 20–23 (2004)

    Article  Google Scholar 

  2. Esser, F., Masselter, T., Speck, T.: Silent pumpers: a comparative topical overview of the peristaltic pumping principle in living nature, engineering, and biomimetics. Adv. Intell. Syst. 1(2) (2019)

    Google Scholar 

  3. Karassik, I.J. (ed.): Pump Handbook, 4th edn. McGraw-Hill, New York (2008)

    Google Scholar 

  4. Bach, D., Schmich, F., Masselter, T., Speck, T.: A review of selected pumping systems in nature and engineering—potential biomimetic concepts for improving displacement pumps and pulsation damping. Bioinspir. Biomim. 10(5), 51001 (2015)

    Article  Google Scholar 

  5. Vogel, S.: Nature’s pumps. Am. Sci. 82(5), 464–471 (1994)

    Google Scholar 

  6. Vogel, S.: Living in a physical world X. Pumping fluids through conduits. J. Biosci. 32(2), 207–222 (2007)

    Article  Google Scholar 

  7. Cannon, W.B.: The nature of gastric peristalsis. Am. J. Physio. Leg. Content 29(2), 250–266 (1911)

    Article  Google Scholar 

  8. Fratzl, P.: Biomimetic materials research: what can we really learn from nature’s structural materials? J. Royal Soc. Interface 4(15), 637–642 (2007)

    Article  Google Scholar 

  9. Lotz, P., Matysek, M., Schlaak, H.F.: Peristaltic pump made of dielectric elastomer actuators. In: Bar-Cohen, Y., Wallmersperger, T. (eds.) Electroactive Polymer Actuators and Devices (EAPAD) 2009, p. 72872D. SPIE, Bellingham (2009)

    Chapter  Google Scholar 

  10. Bowers, A.E., Rossiter, J.M., Walters, P.J., Ieropoulos, I.A.: Dielectric elastomer pump for artificial organisms. In: Bar-Cohen, Y., Carpi, F. (eds.) Electroactive Polymer Actuators and Devices (EAPAD) 2011, p. 797629. SPIE, Bellingham (2011)

    Chapter  Google Scholar 

  11. Fuhrer, R., Schumacher, C.M., Zeltner, M., Stark, W.J.: Soft iron/silicon composite tubes for magnetic peristaltic pumping: frequency-dependent pressure and volume flow. Adv. Func. Mater. 23(31), 3845–3849 (2013)

    Article  Google Scholar 

  12. McCoul, D., Pei, Q.: Tubular dielectric elastomer actuator for active fluidic control. Smart Mater. Struct. 24(10), 105016 (2015)

    Article  Google Scholar 

  13. Miki, H., Okuyama, T., Kodaira, S., Luo, Y., Takagi, T., Yambe, T., Sato, T.: Artificial-esophagus with peristaltic motion using shape memory alloy. Int. J. Appl. Electromagnet. Mech. 33(1–2), 705–711 (2010)

    Article  Google Scholar 

  14. Solano-Arana, S., Klug, F., Mößinger, H., Förster-Zügel, F., Schlaak, H.F.: A novel application of dielectric stack actuators: a pumping micromixer. Smart Mater. Struct. 27(7), 74008 (2018)

    Article  Google Scholar 

  15. Chen, Z., Deng, Z., Dhupia, J.S., Stommel, M., Xu, W.: Modelling of a soft actuator for a planar manipulator table. In: 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE, New York, NY, (2018)

    Google Scholar 

  16. Dirven, S., Xu, W., Cheng, L.K., Allen, J., Bronlund, J.: Biologically-inspired swallowing robot for investigation of texture modified foods. Int. J. Biomech. Biomed. Robot. 2(2), 163 (2013)

    Google Scholar 

  17. Dirven, S., Allen, J., Xu, W., Cheng, L.K.: Soft-robotic esophageal swallowing as a clinically-inspired bolus rheometry technique. Meas. Sci. Technol. 28(3), 35701 (2017)

    Article  Google Scholar 

  18. Esser, F.J., Steger, T., Bach, D., Masselter, T., Speck, T.: Development of novel foam-based soft robotic ring actuators for a biomimetic peristaltic pumping system. In: Mangan, M., Cutkosky, M., Mura, A. (eds.) Biomimetic and Biohybrid Systems, vol. 10384, pp. 138–147. Springer, Cham (2017)

    Chapter  Google Scholar 

  19. Esser, F.J., Krüger, F., Masselter, T., Speck, T.: Development and characterization of a novel biomimetic peristaltic pumping system with flexible silicone-based soft robotic ring actuators. In: Vouloutsi, V., Halloy, J., Mura, A. (eds.) Biomimetic and Biohybrid Systems, vol. 10928, pp. 157–167. Springer, Cham (2018)

    Chapter  Google Scholar 

  20. Esser, F.J., Krüger, F., Masselter, T., Speck, T.: Characterization of biomimetic peristaltic pumping system based on flexible silicone soft robotic actuators as an alternative for technical pumps. In: Martinez-Hernandez, U., Vouloutsi, V., Mura, A. (eds.) Biomimetic and Biohybrid systems, vol. 11556, pp. 101–113. Springer, Cham (2019)

    Chapter  Google Scholar 

  21. Stommel, M., Xu, W., Lim, P.P.K., Kadmiry, B.: Robotic sorting of ovine offal: discussion of a soft peristaltic approach. Soft Robot. 1(4), 246–254 (2014)

    Article  Google Scholar 

  22. Suzuki, K., Nakamura, T.: Development of a peristaltic pump based on bowel peristalsis using for artificial rubber muscle. In: The IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010), pp. 3085–3090. IEEE, Piscataway, NJ (2010)

    Google Scholar 

  23. Yamada, Y., Ashigaki, K., Yoshihama, S., Negishi, K., Kato, K., Nakamura, T.: Triangular cross-section peristaltic conveyor for transporting powders at high speed in printers. Adv. Robot. 32(12), 646–658 (2018)

    Article  Google Scholar 

  24. Yoshihama, S., Takano, S., Yamada, Y., Nakamura, T., Kato, K.: Powder conveyance experiments with peristaltic conveyor using a pneumatic artificial muscle. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1539–1544. IEEE, Piscataway, NJ (2016)

    Google Scholar 

  25. Zhu, M., Xie, M., Xu, W., Cheng, L.K.: A nanocomposite-based stretchable deformation sensor matrix for a soft-bodied swallowing robot. IEEE Sens. J. 16(10), 3848–3855 (2016)

    Article  Google Scholar 

  26. Dirven, S., Xu, W., Cheng, L.: Soft robotics for bio-mimicry of esophageal swallowing. In: Verl, A., Albu-Schäffer, A., Brock, O. (eds.) Soft Robotics: Transferring Theory to Application, pp. 282–291. Springer, Heidelberg (2015)

    Google Scholar 

  27. Hildebrandt, J.-P.: Circulation in the leech, Hirudo Medicinalis L. J. Exp. Biol. 134(1), 235–246 (1988)

    Google Scholar 

  28. Berg, J.M., Dallas, T.: Peristaltic pumps. In: Li, D. (ed.) Encyclopedia of microfluidics and nanofluidics, Second edition, pp. 2693–2701. Springer, New York (2015)

    Chapter  Google Scholar 

  29. Watson-Marlow, in Watson-Marlow Ind. Overv., Waston-Marlow Fluid Technology Group (2018)

    Google Scholar 

  30. LSM Pumper: LSM 200 Technical datasheet. https://www.lsmpumps.com/products/lsm-pumps/lsm-200/ (2020). Accessed 1 Juli 2020

  31. Banić, M., Urek, M. C., Prka, L.: Intestinal Function. In: Duvnjak, M., Smirčić-Duvnjak, L. (eds.) Gastrointestinal complications of diabetes. Clinical Gastroenterology, pp 103–113. Humana Press, Cham (2018)

    Google Scholar 

Download references

Acknowledgements

We thank various colleagues within the framework of the cluster of excellence ‘Living Materials Systems (livMatS)’, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807, for inspiring scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk J. Tauber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tauber, F.J., Masselter, T., Speck, T. (2021). Biomimetic Soft Robotic Peristaltic Pumping System for Coolant Liquid Transport. In: Dröder, K., Vietor, T. (eds) Technologies for economic and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62924-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62924-6_14

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62923-9

  • Online ISBN: 978-3-662-62924-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics