Skip to main content

A Study of Three Different Approaches to Point Placement on a Line in an Inexact Model

  • Chapter
  • First Online:
Transactions on Computational Science XXXIV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 11820))

  • 273 Accesses

Abstract

The point placement problem is to determine the locations of n distinct points on a line uniquely (up to translation and reflection) by making the fewest possible pairwise distance queries of an adversary (an adversary is just a source of true distances). A number of deterministic and randomized algorithms are available when distances are known exactly. In this paper, we discuss the problem in an inexact model. This is when distances returned by the adversary are not exact; instead, only upper and lower bounds on the distances are provided. We explore three different approaches to this problem. The first is based on an adaption of a distance geometry approach that Havel and Crippen [6] used to solve the molecular conformation problem. The second is based on a linear programming solution to a set of difference constraints that was used by Mumey [7] to solve a probe location problem arsing in DNA sequence analysis. The third is based on a heuristic called Stochastic Proximity Embedding, proposed by Agrafiotis [8]. Extensive experiments were carried out to determine the most promising approach vis-a-vis two parameters: run-time and quality of the embedding, measured by computing a certain stress function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blumenthal, L.M.: Theory and Applications of Distance Geometry (1970)

    Google Scholar 

  2. Chin, F.Y.L., Leung, H.C.M., Sung, W.K., Yiu, S.M.: The point placement problem on a line – improved bounds for pairwise distance queries. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 372–382. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74126-8_35

    Chapter  Google Scholar 

  3. Damaschke, P.: Point placement on the line by distance data. Discrete Appl. Math. 127(1), 53–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry, pp. 329–350. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5128-0_16

    Chapter  MATH  Google Scholar 

  5. Mukhopadhyay, A., Sarker, P.K., Kannan, K.K.V.: Randomized versus deterministic point placement algorithms: an experimental study. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 185–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_14

    Chapter  Google Scholar 

  6. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation, vol. 74. Research Studies Press, Somerset, England (1988)

    MATH  Google Scholar 

  7. Mumey, B.: Probe location in the presence of errors: a problem from dna mapping. Discrete Appl. Math. 104(1), 187–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agrafiotis, D.K.: Stochastic proximity embedding. J. Comput. Chem. 24(10), 1215–1221 (2003)

    Article  Google Scholar 

  9. Skiena, S.S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint distances (extended abstract). In: SCG 1990: Proceedings of the Sixth Annual Symposium on Computational Geometry, pp. 332–339. ACM, New York (1990)

    Google Scholar 

  10. Smith, H., Wilcox, K.W.: A restriction enzyme from hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51, 379–391 (1970)

    Article  Google Scholar 

  11. Alam, M.S., Mukhopadhyay, A.: Three paths to point placement. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 33–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14974-5_4

    Chapter  Google Scholar 

  12. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)

    Article  MATH  Google Scholar 

  13. Emiris, I.Z., Psarros, I.D.: Counting Euclidean embeddings of rigid graphs. CoRR abs/1402.1484 (2014)

    Google Scholar 

  14. Saxe, J.B.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: 17th Allerton Conference on Communication, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  15. Mukhopadhyay, A., Rao, S.V., Pardeshi, S., Gundlapalli, S.: Linear layouts of weakly triangulated graphs. Discrete Math. Algorithms Appl. 8(3), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mukhopadhyay, A., Sarker, P.K., Kannan, K.K.: Point placement algorithms: an experimental study. Int. J. Exp. Algorithms 6(1), 1–13 (2016)

    Google Scholar 

  17. Havel, T.F.: Distance geometry: Theory, algorithms, and chemical applications. In: Encyclopedia of Computational Chemistry, vol. 120 (1998)

    Google Scholar 

  18. Newell, W.R., Mott, R., Beck, S., Lehrach, H.: Construction of genetic maps using distance geometry. Genomics 30(1), 59–70 (1995)

    Article  Google Scholar 

  19. Dress, A.W.M., Havel, T.F.: Shortest-path problems and molecular conformation. Discrete Appl. Math. 19(1–3), 129–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company, Cambridge, New York (1989)

    Google Scholar 

  21. Buetow, K.H., Chakravarti, A.: Multipoint gene mapping using seriation. I. General methods. Am. J. Hum. Genet. 41(2), 180 (1987)

    Google Scholar 

  22. Pinkerton, B.: Results of a simulated annealing algorithm for fish mapping. Communicated by Dr. Larry Ruzzo, University of Washington (1993)

    Google Scholar 

  23. Redstone, J., Ruzzo, W.L.: Algorithms for a simple point placement problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 32–43. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_3

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannan, K.K.V., Sarker, P.K., Turdaliev, A., Mukhopadhyay, A., Rahman, M.Z. (2019). A Study of Three Different Approaches to Point Placement on a Line in an Inexact Model. In: Gavrilova, M., Tan, C. (eds) Transactions on Computational Science XXXIV. Lecture Notes in Computer Science(), vol 11820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59958-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59958-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59957-0

  • Online ISBN: 978-3-662-59958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics