Skip to main content

Cartilage Techniques for Osteochondral Lesions of the Talus

  • Chapter
  • First Online:
Sports Injuries of the Foot and Ankle

Abstract

Symptomatic osteochondral lesions of the talus (OLT) often require surgical treatment. Surgery can be broadly divided into reparative, including bone marrow stimulation, and replacement procedures, including osteochondral autograft transplantation and osteochondral allograft transplantation. Other surgical options include autologous chondrocyte implantation and subsequently matrix-induced autologous chondrocyte implantation, which have the potential to promote regeneration; however the supporting evidence is still limited. Additionally, biological adjuncts and scaffolds have been shown to have promising evidence and may be utilized alongside surgery to improve healing potential. This chapter will review the main treatment options for OLT, with guidelines on when each treatment is indicated to optimize patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hintermann B, Boss A, Schäfer D. Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med. 2002;30:402–9.

    Article  PubMed  Google Scholar 

  2. Hintermann B, Regazzoni P, Lampert C, Stutz G, Gächter A. Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg (Br). 2000;82(3):345–51.

    Article  CAS  Google Scholar 

  3. Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 2013;95(11):1045–54.

    Article  PubMed  Google Scholar 

  4. Murawski CD, Foo LF, Kennedy JG. A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern. Cartilage. 2010;1(2):137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique. Cartilage. 2011;2(4):327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niemeyer P, Salzmann G, Schmal H, Mayr H, Südkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. 2012;20(9):1696–703.

    Article  PubMed  Google Scholar 

  7. Smyth NA, Murawski CD, Fortier LA, Cole BJ, Kennedy JG. Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy. 2013;29(8):1399–409.

    Article  PubMed  Google Scholar 

  8. Dahmen J, Lambers KTA, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2142–57. https://doi.org/10.1007/s00167-017-4616-5.

    Article  PubMed  Google Scholar 

  9. Choi WJ, Choi GW, Kim JS, Lee JW. Prognostic significance of the containment and location of osteochondral lesions of the talus independent adverse outcomes associated with uncontained lesions of the talar shoulder. Am J Sports Med. 2013;41(1):126–33.

    Article  PubMed  Google Scholar 

  10. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009;37(10):1974–80.

    Article  PubMed  Google Scholar 

  11. Ramponi L, Yasui Y, Murawski CD, Ferkel RD, DiGiovanni CW, Kerkhoffs GMMJ, Calder JDF, Takao M, Vannini F, Choi WJ, Lee JW, Stone J, Kennedy JG. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med. 2016;45(7):1698–705.

    Article  PubMed  Google Scholar 

  12. Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, Dopirak RM. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.

    Article  PubMed  Google Scholar 

  13. Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238–46.

    Article  PubMed  Google Scholar 

  14. Hurley ET, Shimozono Y, McGoldrick NP, Myerson CL, Yasui Y, Kennedy JG. High reported rate of return to play following bone marrow stimulation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2018; https://doi.org/10.1007/s00167-018-4913-7.

  15. Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies. Cartilage. 2017; https://doi.org/10.1177/1947603517711220.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shimozono Y, Coale M, Yasui Y, O’Halloran A, Deyer TW, Kennedy JG. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis. Am J Sports Med. 2018;46(3):642–8.

    Article  PubMed  Google Scholar 

  17. Lee KB, Bai LB, Yoon TR, Jung ST, Seon JK. Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med. 2009;37(Suppl 1):63S–70S.

    Article  PubMed  Google Scholar 

  18. van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am. 2013;95(6):519–25.

    Article  PubMed  Google Scholar 

  19. Seow D, Yasui Y, Hurley ET, Ross AW, Murawski CD, Shimozono Y, Kennedy JG. Extracellular matrix cartilage allograft and particulate cartilage allograft for osteochondral lesions of the knee and ankle joints: a systematic review. Am J Sports Med. 2018;46(7):1758–66.

    Article  PubMed  Google Scholar 

  20. Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, Madry H. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res. 2013;31(11):1772–9.

    CAS  PubMed  Google Scholar 

  21. Gianakos AL, Yasui Y, Fraser EJ, Ross KA, Prado MP, Fortier LA, Kennedy JG. The effect of different bone marrow stimulation techniques on human talar subchondral bone: a micro-computed tomography evaluation. Arthroscopy. 2016;32(10):2110–7.

    Article  PubMed  Google Scholar 

  22. Karnovsky SC, DeSandis B, Haleem AM, Sofka CM, O’Malley M, Drakos MC. Foot Ankle Int. 2018;39(4):393–405.

    Article  PubMed  Google Scholar 

  23. Fortier LA, Chapman HS, Pownder SL, Roller BL, Cross JA, Cook JL, Cole BJ. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44(9):2366–74.

    Article  PubMed  Google Scholar 

  24. Desai S. Treatment of osteochondral lesions of the talus with marrow stimulation and micronized allograft cartilage matrix: an all-arthroscopic technique. Tech Foot Ankle Surg. 2014;14(3):167–73.

    Article  Google Scholar 

  25. Ross AW, Murawski CD, Frase EJ, Ross KA, Do HT, Deyer TW, Kennedy JG. Autologous osteochondral transplantation for osteochondral lesions of the talus: does previous bone marrow stimulation negatively affect clinical outcome? Arthroscopy. 2016;32(7):1377–83.

    Article  PubMed  Google Scholar 

  26. Scranton PE Jr, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg (Br). 2006;88(5):614–9.

    Article  Google Scholar 

  27. Yoon HS, Park YJ, Lee M, Choi WJ, Lee JW. Osteochondral autologous transplantation is superior to repeat arthroscopy for the treatment of osteochondral lesions of the talus after failed primary arthroscopic treatment. Am J Sports Med. 2014;42(8):1896–903.

    Article  PubMed  Google Scholar 

  28. Kim YS, Park EH, Kim YC, Koh YG, Lee JW. Factors associated with the clinical outcomes of the osteochondral autograft transfer system in osteochondral lesions of the talus: second-look arthroscopic evaluation. Am J Sports Med. 2012;40(12):2709–19.

    Article  PubMed  Google Scholar 

  29. Paul J, Sagstetter A, Kriner M, Imhoff AB, Spang J, Hinterwimmer S. Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am. 2009;91(7):1683–8.

    Article  CAS  PubMed  Google Scholar 

  30. Shimozono Y, Donders JCE, Yasui Y, Hurley ET, Deyer TW, Nguyen JT, Kennedy JG. Effect of the containment type on clinical outcomes in osteochondral lesions of the talus treated with autologous osteochondral transplantation. Am J Sports Med. 2018;46(9):2096–102. https://doi.org/10.1177/0363546518776659.

    Article  PubMed  Google Scholar 

  31. Hangody L, Dobos J, Baló E, Pánics G, Hangody LR, Berkes I. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med. 2010;38(6):1125–33.

    Article  PubMed  Google Scholar 

  32. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, Do HT, O’Malley MJ, Kennedy JG. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2):339–7.

    Article  PubMed  Google Scholar 

  33. Shimozono Y, Hurley ET, Myerson CL, Kennedy JG. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Tramatol Arthrosc. 2018;26(10):3055–62. https://doi.org/10.1007/s00167-018-4917-3.

    Article  Google Scholar 

  34. Haleem AM, Ross KA, Smyth NA, Duke GL, Deyer TW, Do HT, Kennedy JG. Double-plug autologous osteochondral transplantation shows equal functional outcomes compared with single-plug procedures in lesions of the talar dome a minimum 5-year clinical follow-up. Am J Sports Med. 2014;42(8):1888–95.

    Article  PubMed  Google Scholar 

  35. Fansa AM, Murawski CD, Imhauser CW, Nguyen JT, Kennedy JG. Autologous osteochondral transplantation of the talus partially restores contact mechanics of the ankle joint. Am J Sports Med. 2011;39(11):2457–65.

    Article  PubMed  Google Scholar 

  36. Fraser EJ, Harris MC, Prado MP, Kennedy JG. Autologous osteochondral transplantation for osteochondral lesions of the talus in an athletic population. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1272–9.

    Article  PubMed  Google Scholar 

  37. Fraser EJ, Savage-Elliott I, Yasui Y, Ackermann J, Watson G, Ross KA, Deyer T, Kennedy JG. Clinical and MRI donor site outcomes following autologous osteochondral transplantation for talar osteochondral lesions. Foot Ankle Int. 2016;37(9):968–76.

    Article  PubMed  Google Scholar 

  38. Gianakos AL, Hannon CP, Ross KA, Newman H, Egan CJ, Deyer TW, Kennedy JG. Anterolateral tibial osteotomy for accessing osteochondral lesions of the talus in autologous osteochondral transplantation: functional and t2 MRI analysis. Foot Ankle Int. 2015;36(5):531–8.

    Article  PubMed  Google Scholar 

  39. Lamb J, Murawski CD, Deyer TW, Kennedy JG. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1283–8.

    Article  PubMed  Google Scholar 

  40. Savage-Elliott I, Smyth NA, Deyer TW, Murawski CD, Ross KA, Hannon CP, Do HT, Kennedy JG. Magnetic resonance imaging evidence of postoperative cyst formation does not appear to affect clinical outcomes after autologous osteochondral transplantation of the talus. Arthroscopy. 2016;32(9):1846–54.

    Article  PubMed  Google Scholar 

  41. Neri S, Vannini F, Desando G, Grigolo B, Ruffilli A, Buda R, Facchini A, Giannini S. Ankle bipolar fresh osteochondral allograft survivorship and integration: transplanted tissue genetic typing and phenotypic characteristics. J Bone Joint Surg Am. 2013;95(20):1852–60.

    Article  PubMed  Google Scholar 

  42. VanTienderen RJ, Dunn JC, Kuznezov N, Orr JD. Osteochondral allograft transfer for treatment of osteochondral lesions of the talus: a systematic review. Arthroscopy. 2017;33(1):217–22.

    Article  PubMed  Google Scholar 

  43. Cook JL, Stannard JP, Stoker AM, Bozynski CC, Kuroki K, Cook CR, Pfeiffer FM. Importance of donor chondrocyte viability for osteochondral allografts. Am J Sports Med. 2016;44(5):1260–8.

    Article  PubMed  Google Scholar 

  44. Williams SK, Amiel D, Ball ST, Allen RT, Wong VW, Chen AC, Sah RL, Bugbee WD. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85(11):2111–20.

    Article  PubMed  Google Scholar 

  45. Oladeji LO, Stannard JP, Cook CR, Kfuri M, Crist BD, Smith MJ, Cook JL. Effects of autogenous bone marrow aspirate concentrate on radiographic integration of femoral condylar osteochondral allografts. Am J Sports Med. 2017;45(12):2797–803.

    Article  PubMed  Google Scholar 

  46. Raikin SM. Fresh osteochondral allografts for large-volume cystic osteochondral defects of the talus. J Bone Joint Surg Am. 2009;91(12):2818–26.

    Article  PubMed  Google Scholar 

  47. El-Rashidy H, Villacis D, Omar I, Kelikian AS. Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review. J Bone Joint Surg Am. 2011;93(17):1634–40.

    Article  PubMed  Google Scholar 

  48. Ahmad J, Jones K. Comparison of osteochondral autografts and allografts for treatment of recurrent or large talar osteochondral lesions. Foot Ankle Int. 2016;37(1):40–50.

    Article  PubMed  Google Scholar 

  49. Candrian C, Miot C, Wolf F, Bonacina E, Dickinson S, Wirz D, Jakob M, Valderrabano V, Barbero A, Martin I. Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair? Osteoarthr Cartil. 2010;18(8):1067–76.

    Article  CAS  Google Scholar 

  50. Giannini S, Battaglia M, Buda R, Cavallo M, Ruffilli A, Vannini F. Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med. 2009;37(Suppl 1):112S–8S.

    Article  PubMed  Google Scholar 

  51. Giannini S, Buda R, Ruffilli A, Cavallo M, Pagliazzi G, Bulzamini MC, Desando G, Luciani D, Vannini F. Arthroscopic autologous chondrocyte implantation in the ankle joint. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1311–9.

    Article  PubMed  Google Scholar 

  52. Battaglia M, Vannini F, Buda R, Cavallo M, Ruffilli A, Monti C, Galletti S, Giannini S. Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: mid-term T2-mapping MRI evaluation. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1376–84.

    Article  PubMed  Google Scholar 

  53. Aurich M, Bedi HS, Smith PJ, Rolauffs B, Mückley T, Clayton J, Blackney M. Arthroscopic treatment of osteochondral lesions of the ankle with matrix-associated chondrocyte implantation: early clinical and magnetic resonance imaging results. Am J Sports Med. 2011;39(2):311–9.

    Article  PubMed  Google Scholar 

  54. Magnan B, Samaila E, Bondi M, Vecchini E, Micheloni GM, Bartolozzi P. Three-dimensional matrix-induced autologous chondrocytes implantation for osteochondral lesions of the talus: midterm results. Adv Orthop. 2012;2012:942174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Valderrabano V, Miska M, Leumann A, Wiewiorski M. Reconstruction of osteochondral lesions of the talus with autologous spongiosa grafts and autologous matrix-induced chondrogenesis. Am J Sports Med. 2013;41(3):519–27.

    Article  PubMed  Google Scholar 

  56. Wiewiorski M, Miska M, Kretzschmar M, Studler U, Bieri O, Valderrabano V. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus. Clin Radiol. 2013;68(10):1031–8.

    Article  CAS  PubMed  Google Scholar 

  57. Vannini F, Cavallo M, Ramponi L, Castagnini F, Massimi S, Giannini S, Buda R. Return to sports after bone marrow-derived cell transplantation for osteochondral lesions of the talus. Cartilage. 2017;8(1):80–7.

    Article  PubMed  Google Scholar 

  58. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Giannini S. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39(5):893–900.

    Article  PubMed  Google Scholar 

  59. Baksh N, Hannon CP, Murawski CD, Smyth NA, Kennedy JG. Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy. 2013;29(3):596–607.

    Article  PubMed  Google Scholar 

  60. Smyth NA, Haleem AM, Murawski CD, Do HT, Deland JT, Kennedy JG. The effect of platelet-rich plasma on autologous osteochondral transplantation an in vivo rabbit mode. J Bone Joint Surg Am. 2013;95(24):2185–93.

    Article  PubMed  Google Scholar 

  61. Boakye LA, Pinski JM, Smyth NA, Haleem AM, Hannon CP, Fortier LA, Kennedy JG. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop. 2015;6(11):961–99.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guney A, Akar M, Karaman I, Oner M, Guney B. Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee surgery, sports traumatology. Arthroscopy. 2013;23(8):2384–9.

    Google Scholar 

  63. Görmeli G, Karakaplan M, Görmeli CA, Sarlkaya B, Elmall N, Ersoy Y. Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial. Foot Ankle Int. 2015;36(8):891–900.

    Article  PubMed  Google Scholar 

  64. Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M. Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med. 2012;40(3):534–41.

    Article  PubMed  Google Scholar 

  65. Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2018;26(1):333–42.

    Article  PubMed  Google Scholar 

  66. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.

    Article  PubMed  Google Scholar 

  67. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, Low S, Wallin KL, Ragavanaidu K. Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy. 2009;25(12):1391–400.

    Article  PubMed  Google Scholar 

  68. Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85(Suppl 2):25–32.

    Article  PubMed  Google Scholar 

  69. Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, Dornan GJ, Muschler GF, LaPrade RF. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J Bone Joint Surg Am. 2017;99(20):1769–79.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hurley, E.T., Shimozono, Y., Kennedy, J.G. (2019). Cartilage Techniques for Osteochondral Lesions of the Talus. In: Canata, G., d'Hooghe, P., Hunt, K., Kerkhoffs, G., Longo, U. (eds) Sports Injuries of the Foot and Ankle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58704-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58704-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58703-4

  • Online ISBN: 978-3-662-58704-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics