Skip to main content

Fast Boundary Element Methods for Composite Materials

  • Chapter
  • First Online:
Multi-scale Simulation of Composite Materials

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 692 Accesses

Abstract

In this chapter, we construct numerical solutions to the problems in the field of solid mechanics by combining the Boundary Element Method (BEM) with interpolation by means of radial basis functions. The main task is to find an approximation to a particular solution of the corresponding elliptic system of partial differential equations. To construct the approximation, the differential operator is applied to a vector of radial basis functions. The resulting vectors are linearly combined to interpolate the function on the right-hand side. The solvability of the interpolation problem is established. Additionally, stability and accuracy estimates for the method are given. A fast numerical method for the solution of the interpolation problem is proposed. These theoretical results are then illustrated on several numerical examples related to the Lamé system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One seeks for the solution u in the subspace \(\left\{ v\in ( H^{1}( \varOmega ))^{3}:\text {div }\sigma _d( v,x) \in ( L^{2}( \varOmega ))^{3}\right\} \) of the Sobolev space \(( H^{1}( \varOmega ))^{3}\).

References

  1. Andrä, H., Grzhibovskis, R., Rjasanow, S.: Boundary element method for linear elasticity with conservative body forces. In: Advanced Finite Element Methods and Applications. Lecture Notes Applied Computer Mechanics, vol. 66, pp. 275–297. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Arad, N.: Image warping by radial basis functions: applications to facial expressions. CVGIP Graph. Models Image Process. 56(2), 161–172 (1994)

    Article  Google Scholar 

  3. Beatson, R.K., Light, W.A.: Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic splines. IMA J. Numer. Anal. 17(3), 343–372 (1997)

    Article  MathSciNet  Google Scholar 

  4. Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions. Advances in the theory and applications of radial basis functions. I. Comput. Math. Appl. 24(12), 7–19 (1992)

    Google Scholar 

  5. Beatson, R.K., Cherrie, J.B., Mouat, C.T.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Radial basis functions and their applications. Adv. Comput. Math. 11(2-3), 253–270 (1999)

    Google Scholar 

  6. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bebendorf, M.: Hierarchical matrices. A means to efficiently solve elliptic boundary value problems. In: Lecture Notes in Computational Science and Engineering, vol. 63. Springer, Berlin (2008)

    Google Scholar 

  8. Bebendorf, M., Grzhibovskis, R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Meth. Appl. Sci. 29, 1721–1747 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70, 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  10. Börm, S.: Efficient numerical methods for non-local operators. \(H^2\)-matrix compression, algorithms and analysis. In: EMS Tracts in Mathematics, vol. 14. European Mathematical Society (EMS), Zürich (2010)

    Google Scholar 

  11. Buhmann, M.D.: Radial basis functions: theory and implementations. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  12. Cheng, A.: Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis function. Eng. Anal. Boundary Elem. 24, 531–538 (2000)

    Article  Google Scholar 

  13. Cherrie, J.B., Beatson, R.K., Newsam, G.N.: Fast evaluation of radial basis functions: methods for generalized multiquadrics in \(\mathbb{R}^n\). SIAM J. Sci. Comput. 23(5), 1549–1571 (2002)

    Article  MathSciNet  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995), https://doi.org/10.1023/A:1022627411411

    Google Scholar 

  15. Fasshauer G.E.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: With 1 CD-ROM. Windows, Macintosh and UNIX (2007)

    Google Scholar 

  16. Faul, A.C., Powell, M.J.D.: Krylov subspace methods for radial basis function interpolation. In: Numerical Analysis 1999 (Dundee), Chapman & Hall/CRC Res. Notes Math., vol. 420, pp. 115–141. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Google Scholar 

  17. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2007/08)

    Article  MathSciNet  Google Scholar 

  18. Fuselier, E.J.: Refined error estimates for matrix-valued radial basis functions. Thesis (Ph.D.)—Texas A&M University. ProQuest LLC, Ann Arbor, MI (2006)

    Google Scholar 

  19. Fuselier, E.J.: Improved stability estimates and a characterization of the native space for matrix-valued RBFs. Adv. Comput. Math. 29(3), 311–313 (2008)

    Article  MathSciNet  Google Scholar 

  20. Fuselier, E.J.: Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants. Math. Comp. 77(263), 1407–1423 (2008)

    Article  MathSciNet  Google Scholar 

  21. Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45(4), 1723–1741 (2007)

    Article  MathSciNet  Google Scholar 

  22. Grzhibovskis, R., Bambach, M., Rjasanow, S., Hirt, G.: Adaptive cross-approximation for surface reconstruction using radial basis functions. J. Eng. Math. 62(2), 149–160 (2008)

    Article  MathSciNet  Google Scholar 

  23. Grzhibovskis, R., Michel, C., Rjasanow, S.: Matrix-valued radial basis functions for the Lamé system. Math. Methods Appl. Sci. 41, 6080–6107 (2018)

    Article  MathSciNet  Google Scholar 

  24. Hackbusch, W.: A sparse matrix arithmetic based on \(H\)-matrices. I. Introduction to \(H\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  Google Scholar 

  25. Hackbusch, W.: Hierarchische Matrizen: Algorithmen und Analysis. Springer (2009)

    Google Scholar 

  26. Hackbusch, W., Khoromskij, B.N.: A sparse \(H\)-matrix arithmetic: general complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000); Numerical analysis 2000, Vol. VI, Ordinary differential equations and integral equations

    Google Scholar 

  27. Hackbusch, W., Khoromskij, B.N.: A sparse \(H\)-matrix arithmetic. II. Application to multi-dimensional problems. Computing 64(1), 21–47 (2000)

    MATH  Google Scholar 

  28. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \(H^2\)-matrices. In: Lectures on Applied Mathematics (Munich, 1999), pp. 9–29. Springer, Berlin (2000)

    Chapter  Google Scholar 

  29. Iske, A.: Scattered data modelling using radial basis functions. In: Tutorials on Multiresolution in Geometric Modelling, pp. 205–242. Springer (2002), https://doi.org/10.1007/978-3-662-04388-2_9

    Google Scholar 

  30. Iske, A., Le Borne, S., Wende, M.: Hierarchical matrix approximation for kernel-based scattered data interpolation. SIAM J. Sci. Comput. 39(5), A2287–A2316 (2017)

    Article  MathSciNet  Google Scholar 

  31. Lee, D.: Fast multiplication of a recursive block Toeplitz matrix by a vector and its application. J. Complex. 2, 295–305 (1986)

    Article  MathSciNet  Google Scholar 

  32. Lemaitre, J., Chaboche, J.L.: Aspects phénoménologiques de la rupture par endommagement. Journal de Mecanique Appliquée 2, 317–365 (1978)

    Google Scholar 

  33. Liu, Y., Liew, K., Hon, Y., Zhang, X.: Numerical simulation and analysis of an electroactuated beam using a radial basis function. Smart Mater. Struct. 14(6), 1163–1171 (2000)

    Article  Google Scholar 

  34. Livne, O.E., Wright, G.B.: Fast multilevel evaluation of smooth radial basis function expansions. Electron. Trans. Numer. Anal. 23, 263–287 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Lowitzsch, S.: A density theorem for matrix-valued radial basis functions. Numer. Alg. 39(1–3), 253–256 (2005)

    Article  MathSciNet  Google Scholar 

  36. Lowitzsch, S.: Matrix-valued radial basis functions: stability estimates and applications. Adv. Comput. Math. 23(3), 299–315 (2005)

    Article  MathSciNet  Google Scholar 

  37. Muleshkov, A.S., Golberg, M.A.: Particular solutions of the multi-Helmholtz-type equation. Eng. Anal. Boundary Elem. 31(7), 624–630 (2007)

    Article  Google Scholar 

  38. Muleshkov, A.S., Golberg, M.A., Chen, C.S.: Particular solutions of Helmholtz-type operators using higher order polyharmonic splines. Comput. Mech. 23(5–6), 411–419 (1999)

    Article  MathSciNet  Google Scholar 

  39. Narcowich, F.J., Ward, J.D.: Norms of inverses for matrices associated with scattered data. In: Curves and Surfaces (Chamonix-Mont-Blanc, 1990), pp. 341–348. Academic Press, Boston, MA (1991)

    Google Scholar 

  40. Narcowich, F.J., Ward, J.D.: Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comp. 63(208), 661–687 (1994)

    Article  MathSciNet  Google Scholar 

  41. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comp. 74(250), 743–763 (2005)

    Article  MathSciNet  Google Scholar 

  42. Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24(2), 175–186 (2006)

    Article  MathSciNet  Google Scholar 

  43. Powell, M.: Tabulation of thin-plate splines on a very fine two dimensional grid. University of Cambridge, Technical Report No. DAMTP 1992/NA2 (1992)

    Google Scholar 

  44. Powell, M.J.D.: Truncated Laurent expansions for the fast evaluation of thin plate splines. Numer. Algorithms 5(1-4), 99–120 (1993); Algorithms for approximation, III (Oxford, 1992)

    Google Scholar 

  45. Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. No. 12 in Springer Series in Mathematical and Analytical Technology with Applications to Engineering. Springer, Berlin-Heidelberg-NewYork (2007)

    Google Scholar 

  46. Schaback, R.S., Chen, C.S., Hon, R.S.: Scientific computing with radial basis functions. Technical Report, Univeristy of Goettingen (2007)

    Google Scholar 

  47. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 30. Princeton University Press (1970)

    Google Scholar 

  48. Tsai, C.C., Cheng, A.H.D., Chen, C.S.: Particular solutions of splines and monomials for polyharmonic and products of Helmholtz operators. Eng. Anal. Bound. Elem. 33(4), 514–521 (2009)

    Article  MathSciNet  Google Scholar 

  49. Uhlir, K., Skala, V.: Radial basis function use for the restoration of damaged images. Computer Vision and Graphics, pp. 839–844. Kluwer Academic Publishers (2006)

    Google Scholar 

  50. Wendland, H.: Scattered data approximation. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  51. Wendland, H.: On the stability of meshless symmetric collocation for boundary value problems. BIT 47(2), 455–468 (2007)

    Article  MathSciNet  Google Scholar 

  52. Xiang, S., Wang, K.: Free vibration analysis of symmetric laminated composite plates by trigonometric shear deformation theory and inverse multiquadric rbf. Thin-Walled Struct. 47, 304–310 (2007)

    Article  Google Scholar 

  53. Yao, G.: Local radial basis function methods for solving partial differential equations. Ph.D. Thesis. University of Southern Mississippi (2011)

    Google Scholar 

  54. Zgurovsky, M.Z., Zaychenko, : Y.P.: Neural networks. In: The Fundamentals of Computational Intelligence: System Approach, pp. 1–38. Springer (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergej Rjasanow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzhibovskis, R., Michel, C., Rjasanow, S. (2019). Fast Boundary Element Methods for Composite Materials. In: Diebels, S., Rjasanow, S. (eds) Multi-scale Simulation of Composite Materials. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57957-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57957-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57956-5

  • Online ISBN: 978-3-662-57957-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics