Skip to main content

Modelling of Geometrical Microstructures and Mechanical Behaviour of Constituents

  • Chapter
  • First Online:
Multi-scale Simulation of Composite Materials

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 695 Accesses

Abstract

In addition to the macroscopic component geometry, a morphological microstructure model and material models for all individual phases of the material are required as input data to apply multi-scale methods. However, the advantage is that complicated mechanical coupon tests on the composite material can be avoided. This chapter explains the computation of morphological and material parameters on the example of short glass fibre reinforced polymers. The fibre orientation is the most important geometrical micro-structural parameter which has to be computed from µCT scans, whereas other micro-structural parameters (e.g. fibre length distribution and diameter) are a priori known. State-of-the-art methods for estimating local fibre orientations based on 3D image data are used to determine this essential microstructure feature depending on the sample position w.r.t. the flow front. After that the generation of virtual microstructures with the same morphological parameters as the µCT scans is considered. In the second part of this chapter, the identification of the material parameters is described for the polymer polybutylene terephthalate (PBT). All necessary parameters of a rate-independent elastoplastic model with damage are computed from cyclic tensile tests with increasing load amplitudes. Finally, the validation of the morphological and material models are illustrated by using an FFT-accelerated pseudo-spectral method as micro-scale solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baur, E., Osswald, T.A., Rudolph, N., Brinkmann, S., Schmachtenberg, E. (eds.): Saechtling Kunststoff Taschenbuch, 31st edn. Hanser (2013)

    Google Scholar 

  2. Fisher, N., Lewis, T., Embleton, B.: Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge, UK (1987)

    Book  Google Scholar 

  3. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention, pp. 130–137 (1998)

    Chapter  Google Scholar 

  4. Fraunhofer ITWM, Department of Image Processing: MAVI—modular algorithms for volume images. http://www.mavi-3d.de (2005)

  5. GeoDict.: www.geodict.com. Accessed 16 Jan 2019

  6. Ju, J.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solids Struct. 25(7), 803–833 (1989)

    Article  Google Scholar 

  7. Kabel, M., Böhlke, T., Schneider, M.: Efficient fixed point and Newton-Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput. Mech. 54(6), 1497–1514 (2014)

    Article  MathSciNet  Google Scholar 

  8. Kouznetsova, V., Brekelmans, W., Baaijens, F.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27(1), 37–48 (2001)

    Article  Google Scholar 

  9. Kröner, E.: Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25(2), 137–155 (1977)

    Article  Google Scholar 

  10. Lippmann, B., Schwinger, J.: Variational principles for scattering processes. Phys. Rev. 79, 469–480 (1950)

    Article  MathSciNet  Google Scholar 

  11. Moulinec, H., Suquet, P.: A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11), 1417–1423 (1994)

    MATH  Google Scholar 

  12. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998)

    Article  MathSciNet  Google Scholar 

  13. Mura, T.: Micromechanics of Defects in Solids, 2nd, revised edn. Mechanics of Elastic and Inelastic Solids. Martinus Nijhoff Publishers, Dordrecht (1987)

    Google Scholar 

  14. Niedziela, T., Strautins, U., Hosdez, V., Kech, A., Latz, A.: Improved multiscale fiber orientation modeling in injection molding of short fiber reinforced thermoplastics: simulation and Experiment. Int. J. Multiphys. Special Edition: Multiphys. Simul. Adv. Methods Ind. Eng. 357–366 (2011)

    Google Scholar 

  15. Ohser, J., Schladitz, K.: 3D Images of Materials Structures: Processing and Analysis. Wiley VCH (2009)

    Google Scholar 

  16. Onate, E. (ed.): Multiscale modeling of progressive damage in elasto-plastic composite materials (2014)

    Google Scholar 

  17. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  18. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Heidelberg (2008)

    Book  Google Scholar 

  19. Spahn, J., Andrä, H., Kabel, M., Müller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 268, 871–883 (2014)

    Article  MathSciNet  Google Scholar 

  20. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  21. Wirjadi, O.: Models and algorithms for image-based analysis of microstructures. Ph.D. thesis. Technische Universität Kaiserslautern (2009)

    Google Scholar 

  22. Wirjadi, O., Schladitz, K., Easwaran, P., Ohser, J.: Estimating fibre direction distributions of reinforced composites from tomographic images. Image Anal. Stereol. 35(3), 167–179 (2016)

    Article  Google Scholar 

  23. Zeller, R., Dederichs, P.H.: Elastic constants of polycrystals. Phys. Status Solidi (b) 55(2), 831–842 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Andrä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrä, H., Dobrovolskij, D., Schladitz, K., Staub, S., Müller, R. (2019). Modelling of Geometrical Microstructures and Mechanical Behaviour of Constituents. In: Diebels, S., Rjasanow, S. (eds) Multi-scale Simulation of Composite Materials. Mathematical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57957-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57957-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57956-5

  • Online ISBN: 978-3-662-57957-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics