Skip to main content

Consequences of Complete ACL Ruptures

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

This chapter reviews the potential problems caused by ACL tears that are treated conservatively. A general consensus exists among clinicians that a complete ACL rupture causes long-term problems, especially a decrease in activity level and an early onset of knee osteoarthritis. Few patients sustain an isolated ACL tear as concomitant bone bruising has been documented in 80–95% of patients, meniscus tears occur in approximately 60%, and chondral injuries occur in 20%. Frequent subsequent reinjuries causing meniscus tears have been reported in the majority of studies, along with chondral damage and articular cartilage lesions that presumably result from traumatic giving-way episodes or increased catabolic activity. Knees with ACL deficiency that undergo meniscectomy have an increased risk of developing early arthritis compared with those that do not sustain meniscus damage. Altered knee kinematics, quadriceps weakness, and abnormal gait patterns that increase or alter joint loads and contact pressures may cause early arthritis in ACL-deficient knees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ageberg E, Pettersson A, Friden T (2007) 15-year follow-up of neuromuscular function in patients with unilateral nonreconstructed anterior cruciate ligament injury initially treated with rehabilitation and activity modification: a longitudinal prospective study. Am J Sports Med 35(12):2109–2117

    Article  PubMed  Google Scholar 

  2. Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: Part 1, outcomes. Am J Sports Med 36(1):40–47

    Article  PubMed  Google Scholar 

  3. Kostogiannis I, Ageberg E, Neuman P, Dahlberg L, Friden T, Roos H (2007) Activity level and subjective knee function 15 years after anterior cruciate ligament injury: a prospective, longitudinal study of nonreconstructed patients. Am J Sports Med 35(7):1135–1143

    Article  PubMed  Google Scholar 

  4. Mihelic R, Jurdana H, Jotanovic Z, Madjarevic T, Tudor A (2011) Long-term results of anterior cruciate ligament reconstruction: a comparison with non-operative treatment with a follow-up of 17-20 years. Int Orthop 35(7):1093–1097. https://doi.org/10.1007/s00264-011-1206-x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nebelung W, Wuschech H (2005) Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes. Arthroscopy 21(6):696–702

    Article  PubMed  Google Scholar 

  6. Neuman P, Kostogiannis I, Friden T, Roos H, Dahlberg LE, Englund M (2012) Knee laxity after complete anterior cruciate ligament tear: a prospective study over 15 years. Scand J Med Sci Sports 22(2):156–163. https://doi.org/10.1111/j.1600-0838.2010.01157.x

    Article  PubMed  CAS  Google Scholar 

  7. Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36(9):1717–1725. https://doi.org/10.1177/0363546508316770

    Article  PubMed  Google Scholar 

  8. Neuman P, Kostogiannis I, Friden T, Roos H, Dahlberg LE, Englund M (2009) Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury—a prospective cohort study. Osteoarthr Cartil 17(3):284–290. https://doi.org/10.1016/j.joca.2008.07.005

    Article  CAS  Google Scholar 

  9. Sanders TL, Pareek A, Kremers HM, Bryan AJ, Levy BA, Stuart MJ, Dahm DL, Krych AJ (2016) Long-term follow-up of isolated ACL tears treated without ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-016-4172-4

  10. Sanders TL, Maradit Kremers H, Bryan AJ, Kremers WK, Levy BA, Dahm DL, Stuart MJ, Krych AJ (2016) Incidence of and factors associated with the decision to undergo anterior cruciate ligament reconstruction 1 to 10 years after injury. Am J Sports Med 44(6):1558–1564. https://doi.org/10.1177/0363546516630751

    Article  PubMed  Google Scholar 

  11. Strehl A, Eggli S (2007) The value of conservative treatment in ruptures of the anterior cruciate ligament (ACL). J Trauma 62(5):1159–1162. https://doi.org/10.1097/TA.0b013e31805006e7

    Article  PubMed  Google Scholar 

  12. Irrgang JJ, Ho H, Harner CD, Fu FH (1998) Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 6:107–114

    Article  PubMed  CAS  Google Scholar 

  13. Chalmers PN, Mall NA, Moric M, Sherman SL, Paletta GP, Cole BJ, Bach BR Jr (2014) Does ACL reconstruction alter natural history?: a systematic literature review of long-term outcomes. J Bone Joint Surg Am 96(4):292–300. https://doi.org/10.2106/JBJS.L.01713

    Article  PubMed  Google Scholar 

  14. Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am 65(2):154–162

    Article  PubMed  CAS  Google Scholar 

  15. Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507. https://doi.org/10.1177/0363546516629944

    Article  PubMed  Google Scholar 

  16. Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252. https://doi.org/10.1177/0363546513508376

    Article  PubMed  Google Scholar 

  17. Fok AW, Yau WP (2013) Delay in ACL reconstruction is associated with more severe and painful meniscal and chondral injuries. Knee Surg Sports Traumatol Arthrosc 21(4):928–933. https://doi.org/10.1007/s00167-012-2027-1

    Article  PubMed  Google Scholar 

  18. Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37(5):955–961. https://doi.org/10.1177/0363546508330136

    Article  PubMed  Google Scholar 

  19. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  20. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244. https://doi.org/10.1016/j.knee.2008.11.004

    Article  PubMed  Google Scholar 

  21. Nguyen JT, Wasserstein D, Reinke EK, Spindler KP, Mehta N, Doyle JB, MOON Group, Marx RG (2016) Does the chronicity of anterior cruciate ligament ruptures influence patient-reported outcomes before surgery? Am J Sports Med. https://doi.org/10.1177/0363546516669344

  22. Ralles S, Agel J, Obermeier M, Tompkins M (2015) Incidence of secondary intra-articular injuries with time to anterior cruciate ligament reconstruction. Am J Sports Med 43(6):1373–1379. https://doi.org/10.1177/0363546515574061

    Article  PubMed  Google Scholar 

  23. Rotterud JH, Sivertsen EA, Forssblad M, Engebretsen L, Aroen A (2011) Effect of gender and sports on the risk of full-thickness articular cartilage lesions in anterior cruciate ligament-injured knees: a nationwide cohort study from sweden and norway of 15 783 patients. Am J Sports Med 39(7):1387–1394. https://doi.org/10.1177/0363546510397813

    Article  PubMed  Google Scholar 

  24. Roos H, Adalberth T, Dahlberg L, Lohmander LS (1995) Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthr Cartil 3(4):261–267

    Article  CAS  Google Scholar 

  25. Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  PubMed  CAS  Google Scholar 

  26. Button K, van Deursen R, Price P (2006) Classification of functional recovery of anterior cruciate ligament copers, non-copers, and adapters. Br J Sports Med 40(10):853–859.; discussion 859. https://doi.org/10.1136/bjsm.2006.028258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36(1):48–56

    Article  PubMed  Google Scholar 

  28. Kaplan Y (2011) Identifying individuals with an anterior cruciate ligament-deficient knee as copers and noncopers: a narrative literature review. J Orthop Sports Phys Ther 41(10):758–766. https://doi.org/10.2519/jospt.2011.3384

    Article  PubMed  Google Scholar 

  29. Dunn WR, Spindler KP, Amendola A, Andrish JT, Kaeding CC, Marx RG, McCarty EC, Parker RD, Harrell FE Jr, An AQ, Wright RW, Brophy RH, Matava MJ, Flanigan DC, Huston LJ, Jones MH, Wolcott ML, Vidal AF, Wolf BR (2010) Which preoperative factors, including bone bruise, are associated with knee pain/symptoms at index anterior cruciate ligament reconstruction (ACLR)? A Multicenter Orthopaedic Outcomes Network (MOON) ACLR Cohort Study. Am J Sports Med 38(9):1778–1787. https://doi.org/10.1177/0363546510370279

    Article  PubMed Central  PubMed  Google Scholar 

  30. Nishimori M, Deie M, Adachi N, Kanaya A, Nakamae A, Motoyama M, Ochi M (2008) Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 16(3):270–274. https://doi.org/10.1007/s00167-007-0458-x

    Article  PubMed  Google Scholar 

  31. Papalia R, Torre G, Vasta S, Zampogna B, Pedersen DR, Denaro V, Amendola A (2015) Bone bruises in anterior cruciate ligament injured knee and long-term outcomes. A review of the evidence. Open Access J Sports Med 6:37–48. https://doi.org/10.2147/OAJSM.S75345

    Article  PubMed Central  PubMed  Google Scholar 

  32. Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S (2012) Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med 40(2):276–285. https://doi.org/10.1177/0363546511423380

    Article  PubMed  Google Scholar 

  33. Yoon KH, Yoo JH, Kim KI (2011) Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J Bone Joint Surg Am 93(16):1510–1518. https://doi.org/10.2106/JBJS.J.01320

    Article  PubMed  Google Scholar 

  34. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448

    Article  PubMed  CAS  Google Scholar 

  35. Fink C, Hoser C, Hackl W, Navarro RA, Benedetto KP (2001) Long-term outcome of operative or nonoperative treatment of anterior cruciate ligament rupture—is sports activity a determining variable? Int J Sports Med 22(4):304–309

    Article  PubMed  CAS  Google Scholar 

  36. Roos EM (2005) Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol 17(2):195–200

    Article  PubMed  Google Scholar 

  37. Elsaid KA, Fleming BC, Oksendahl HL, Machan JT, Fadale PD, Hulstyn MJ, Shalvoy R, Jay GD (2008) Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum 58(6):1707–1715. https://doi.org/10.1002/art.23495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Brophy RH, Rai MF, Zhang Z, Torgomyan A, Sandell LJ (2012) Molecular analysis of age and sex-related gene expression in meniscal tears with and without a concomitant anterior cruciate ligament tear. J Bone Joint Surg Am 94(5):385–393. https://doi.org/10.2106/JBJS.K.00919

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, Bach BR Jr, Spindler KP, Group MK (2013) Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am 95(19):1751–1759. https://doi.org/10.2106/JBJS.L.01705

    Article  PubMed Central  PubMed  Google Scholar 

  40. Arner JW, Irvine JN, Zheng L, Gale T, Thorhauer E, Hankins M, Abebe E, Tashman S, Zhang X, Harner CD (2016) The effects of anterior cruciate ligament deficiency on the meniscus and articular cartilage: a novel dynamic in vitro pilot study. Orthop J Sports Med 4(4):2325967116639895. https://doi.org/10.1177/2325967116639895

    Article  PubMed Central  PubMed  Google Scholar 

  41. Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP (2008) Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40(2):215–222. https://doi.org/10.1249/mss.0b013e31815cbb0e

    Article  PubMed  Google Scholar 

  42. Hosseini A, Li JS, Gill TJ, Li G (2014) Meniscus injuries alter the kinematics of knees with anterior cruciate ligament deficiency. Orthop J Sports Med 2(8):2325967114547346. https://doi.org/10.1177/2325967114547346

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nicholson JA, Sutherland AG, Smith FW, Kawasaki T (2012) Upright MRI in kinematic assessment of the ACL-deficient knee. Knee 19(1):41–48. https://doi.org/10.1016/j.knee.2010.11.008

    Article  PubMed  Google Scholar 

  44. Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G (2009) The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy 25(2):123–130. https://doi.org/10.1016/j.arthro.2008.09.020

    Article  PubMed  Google Scholar 

  45. Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P (2015) Gait changes of the ACL-deficient knee 3D kinematic assessment. Knee Surg Sports Traumatol Arthrosc 23(11):3259–3265. https://doi.org/10.1007/s00167-014-3169-0

    Article  PubMed  CAS  Google Scholar 

  46. Signorelli C, Filardo G, Bonanzinga T, Grassi A, Zaffagnini S, Marcacci M (2016) ACL rupture and joint laxity progression: a quantitative in vivo analysis. Knee Surg Sports Traumatol Arthrosc 24(11):3605–3611. https://doi.org/10.1007/s00167-016-4158-2

    Article  PubMed  CAS  Google Scholar 

  47. Van de Velde SK, Gill TJ, Li G (2009) Evaluation of kinematics of anterior cruciate ligament-deficient knees with use of advanced imaging techniques, three-dimensional modeling techniques, and robotics. J Bone Joint Surg Am 91(Suppl 1):108–114. https://doi.org/10.2106/JBJS.H.01382

    Article  PubMed Central  PubMed  Google Scholar 

  48. Zaffagnini S, Signorelli C, Bonanzinga T, Grassi A, Galan H, Akkawi I, Bragonzoni L, Cataldi F, Marcacci M (2016) Does meniscus removal affect ACL-deficient knee laxity? An in vivo study. Knee Surg Sports Traumatol Arthrosc 24(11):3599–3604. https://doi.org/10.1007/s00167-016-4222-y

    Article  PubMed  CAS  Google Scholar 

  49. Zhang Y, Huang W, Yao Z, Ma L, Lin Z, Wang S, Huang H (2016) Anterior cruciate ligament injuries alter the kinematics of knees with or without meniscal deficiency. Am J Sports Med. https://doi.org/10.1177/0363546516658026

  50. Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246. https://doi.org/10.1177/0363546506287299

    Article  PubMed  Google Scholar 

  51. Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88(8):1826–1834. https://doi.org/10.2106/JBJS.E.00539

    Article  PubMed  Google Scholar 

  52. Andriacchi TP, Dyrby CO, Johnson TS (2003) The use of functional analysis in evaluating knee kinematics. Clin Orthop Relat Res 410:44–53

    Article  Google Scholar 

  53. Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman M (2004) Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open "interventional" multiple resonance imaging. Am J Sports Med 32(3):720–726

    Article  PubMed  Google Scholar 

  54. Neuman P, Tjornstrand J, Svensson J, Ragnarsson C, Roos H, Englund M, Tiderius CJ, Dahlberg LE (2011) Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury—comparison with asymptomatic volunteers. Osteoarthr Cartil 19(8):977–983. https://doi.org/10.1016/j.joca.2011.05.002

    Article  CAS  Google Scholar 

  55. Nyland J, Fisher B, Brand E, Krupp R, Caborn DN (2010) Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy 26(9):1248–1257. https://doi.org/10.1016/j.arthro.2010.03.017

    Article  PubMed  Google Scholar 

  56. Hogervorst T, Pels Rijcken TH, van der Hart CP, De Lange ES, Taconis WK (2000) Abnormal bone scans in anterior cruciate ligament deficiency indicate structural and functional abnormalities. Knee Surg Sports Traumatol Arthrosc 8(3):137–142

    Article  PubMed  CAS  Google Scholar 

  57. Bayar A, Sarikaya S, Keser S, Ozdolap S, Tuncay I, Ege A (2008) Regional bone density changes in anterior cruciate ligament deficient knees: a DEXA study. Knee 15(5):373–377. https://doi.org/10.1016/j.knee.2008.05.005

    Article  PubMed  Google Scholar 

  58. Cuellar VG, Cuellar JM, Golish SR, Yeomans DC, Scuderi GJ (2010) Cytokine profiling in acute anterior cruciate ligament injury. Arthroscopy 26(10):1296–1301. https://doi.org/10.1016/j.arthro.2010.02.011

    Article  PubMed  Google Scholar 

  59. Harkey MS, Luc BA, Golightly YM, Thomas AC, Driban JB, Hackney AC, Pietrosimone B (2015) Osteoarthritis-related biomarkers following anterior cruciate ligament injury and reconstruction: a systematic review. Osteoarthr Cartil 23(1):1–12. https://doi.org/10.1016/j.joca.2014.09.004

    Article  CAS  Google Scholar 

  60. Li H, Chen C, Chen S (2015) Posttraumatic knee osteoarthritis following anterior cruciate ligament injury: potential biochemical mediators of degenerative alteration and specific biochemical markers. Biomed Rep 3(2):147–151. https://doi.org/10.3892/br.2014.404

    Article  PubMed  Google Scholar 

  61. Neuman P, Dahlberg LE, Englund M, Struglics A (2016) Concentrations of synovial fluid biomarkers and the prediction of knee osteoarthritis 16 years after anterior cruciate ligament injury. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2016.09.008

  62. Streich NA, Zimmermann D, Schmitt H, Bode G (2011) Biochemical markers in the diagnosis of chondral defects following anterior cruciate ligament insufficiency. Int Orthop 35(11):1633–1637. https://doi.org/10.1007/s00264-010-1191-5

    Article  PubMed Central  PubMed  Google Scholar 

  63. Svoboda SJ, Harvey TM, Owens BD, Brechue WF, Tarwater PM, Cameron KL (2013) Changes in serum biomarkers of cartilage turnover after anterior cruciate ligament injury. Am J Sports Med 41(9):2108–2116. https://doi.org/10.1177/0363546513494180

    Article  PubMed  Google Scholar 

  64. Tourville TW, Johnson RJ, Slauterbeck JR, Naud S, Beynnon BD (2013) Relationship between markers of type II collagen metabolism and tibiofemoral joint space width changes after ACL injury and reconstruction. Am J Sports Med 41(4):779–787. https://doi.org/10.1177/0363546513476481

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yoshida H, Kojima T, Kurokouchi K, Takahashi S, Hanamura H, Kojima M, Poole AR, Ishiguro N (2013) Relationship between pre-radiographic cartilage damage following anterior cruciate ligament injury and biomarkers of cartilage turnover in clinical practice: a cross-sectional observational study. Osteoarthr Cartil 21(6):831–838. https://doi.org/10.1016/j.joca.2013.03.009

    Article  CAS  Google Scholar 

  66. Palmieri-Smith RM, Wojtys EM, Potter HG (2016) Early cartilage changes after anterior cruciate ligament injury: evaluation with imaging and serum biomarkers-a pilot study. Arthroscopy 32(7):1309–1318. https://doi.org/10.1016/j.arthro.2015.12.045

    Article  PubMed  Google Scholar 

  67. Palmieri-Smith RM, Thomas AC (2009) A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev 37(3):147–153. https://doi.org/10.1097/JES.0b013e3181aa6669

    Article  PubMed  Google Scholar 

  68. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB (2007) Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 23 (1):21-28. 28.e21–23

    Google Scholar 

  69. Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA (2010) Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med 38(3):586–593. https://doi.org/10.1177/0363546509349492

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97. https://doi.org/10.4085/1062-6050-45.1.87

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hsiao SF, Chou PH, Hsu HC, Lue YJ (2014) Changes of muscle mechanics associated with anterior cruciate ligament deficiency and reconstruction. J Strength Cond Res 28(2):390–400. https://doi.org/10.1519/JSC.0b013e3182986cc1

    Article  PubMed  Google Scholar 

  72. Konishi Y, Oda T, Tsukazaki S, Kinugasa R, Hirose N, Fukubayashi T (2011) Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 19(4):641–645. https://doi.org/10.1007/s00167-010-1324-9

    Article  PubMed  Google Scholar 

  73. Pua YH, Ong PH, Ho JY, Bryant AL, EW K, Clark RA (2015) Associations of isokinetic knee steadiness with hop performance in patients with ACL deficiency. Knee Surg Sports Traumatol Arthrosc 23(8):2185–2195. https://doi.org/10.1007/s00167-014-2995-4

    Article  PubMed  Google Scholar 

  74. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM (2013) Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train 48(5):610–620. https://doi.org/10.4085/1062-6050-48.3.23

    Article  PubMed Central  PubMed  Google Scholar 

  75. Tsepis E, Vagenas G, Ristanis S, Georgoulis AD (2006) Thigh muscle weakness in ACL-deficient knees persists without structured rehabilitation. Clin Orthop Relat Res 450:211–218. https://doi.org/10.1097/01.blo.0000223977.98712.30

    Article  PubMed  Google Scholar 

  76. Alkjaer T, Henriksen M, Simonsen EB (2011) Different knee joint loading patterns in ACL deficient copers and non-copers during walking. Knee Surg Sports Traumatol Arthrosc 19(4):615–621. https://doi.org/10.1007/s00167-010-1302-2

    Article  PubMed  Google Scholar 

  77. Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44

    Article  PubMed  Google Scholar 

  78. Chen CH, Li JS, Hosseini A, Gadikota HR, Gill TJ, Li G (2012) Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture 35(3):467–471. https://doi.org/10.1016/j.gaitpost.2011.11.009

    Article  PubMed  Google Scholar 

  79. Fuentes A, Hagemeister N, Ranger P, Heron T, de Guise JA (2011) Gait adaptation in chronic anterior cruciate ligament-deficient patients: pivot-shift avoidance gait. Clin Biomech (Bristol, Avon) 26(2):181–187. https://doi.org/10.1016/j.clinbiomech.2010.09.016

    Article  Google Scholar 

  80. Gao B, Cordova ML, Zheng NN (2012) Three-dimensional joint kinematics of ACL-deficient and ACL-reconstructed knees during stair ascent and descent. Hum Mov Sci 31(1):222–235. https://doi.org/10.1016/j.humov.2011.04.009

    Article  PubMed  Google Scholar 

  81. Gao B, Zheng NN (2010) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech (Bristol, Avon) 25(3):222–229. https://doi.org/10.1016/j.clinbiomech.2009.11.006

    Article  Google Scholar 

  82. Huang H, Keijsers N, Horemans H, Guo Q, Yu Y, Stam H, Praet S, Ao Y (2016) Anterior cruciate ligament rupture is associated with abnormal and asymmetrical lower limb loading during walking. J Sci Med Sport. https://doi.org/10.1016/j.jsams.2016.09.010

  83. Iliopoulos E, Galanis N, Iosifidis M, Zafeiridis A, Papadopoulos P, Potoupnis M, Geladas N, Vrabas IS, Kirkos J (2017) Anterior cruciate ligament deficiency reduces walking economy in “copers” and “non-copers”. Knee Surg Sports Traumatol Arthrosc 25(5):1403–1411. https://doi.org/10.1007/s00167-015-3709-2

    Article  PubMed  Google Scholar 

  84. Noyes FR, Schipplein OD, Andriacchi TP, Saddemi SR, Weise M (1992) The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Am J Sports Med 20(6):707–716

    Article  PubMed  CAS  Google Scholar 

  85. Serrancoli G, Monllau JC, Font-Llagunes JM (2016) Analysis of muscle synergies and activation-deactivation patterns in subjects with anterior cruciate ligament deficiency during walking. Clin Biomech (Bristol, Avon) 31:65–73. https://doi.org/10.1016/j.clinbiomech.2015.09.019

    Article  Google Scholar 

  86. Shanbehzadeh S, Mohseni Bandpei MA, Ehsani F (2017) Knee muscle activity during gait in patients with anterior cruciate ligament injury: a systematic review of electromyographic studies. Knee Surg Sports Traumatol Arthrosc 25(5):1432–1442. https://doi.org/10.1007/s00167-015-3925-9

    Article  PubMed  Google Scholar 

  87. Zabala ME, Favre J, Andriacchi TP (2015) Relationship between knee mechanics and time since injury in ACL-deficient knees without signs of osteoarthritis. Am J Sports Med 43(5):1189–1196. https://doi.org/10.1177/0363546514567296

    Article  PubMed  Google Scholar 

  88. Alkjaer T, Simonsen EB, Jorgensen U, Dyhre-Poulsen P (2003) Evaluation of the walking pattern in two types of patients with anterior cruciate ligament deficiency: copers and non-copers. Eur J Appl Physiol 89(3–4):301–308. https://doi.org/10.1007/s00421-002-0787-x

    Article  PubMed  Google Scholar 

  89. Boerboom AL, Hof AL, Halbertsma JP, van Raaij JJ, Schenk W, Diercks RL, van Horn JR (2001) Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 9(4):211–216

    Article  PubMed  CAS  Google Scholar 

  90. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72(6):871–877

    Article  PubMed  CAS  Google Scholar 

  91. Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101. https://doi.org/10.2106/JBJS.H.01408

    Article  PubMed Central  PubMed  Google Scholar 

  92. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9(2):62–71

    Article  PubMed  CAS  Google Scholar 

  93. Patel RR, Hurwitz DE, Bush-Joseph CA, Bach BR Jr, Andriacchi TP (2003) Comparison of clinical and dynamic knee function in patients with anterior cruciate ligament deficiency. Am J Sports Med 31(1):68–74

    Article  PubMed  Google Scholar 

  94. Alkjaer T, Simonsen EB, Magnusson SP, Dyhre-Poulsen P, Aagaard P (2012) Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension. Knee 19(5):633–639. https://doi.org/10.1016/j.knee.2011.12.006

    Article  PubMed  Google Scholar 

  95. Roos PE, Button K, van Deursen RW (2014) Motor control strategies during double leg squat following anterior cruciate ligament rupture and reconstruction: an observational study. J Neuroeng Rehabil 11:19. https://doi.org/10.1186/1743-0003-11-19

    Article  PubMed Central  PubMed  Google Scholar 

  96. Oberlander KD, Bruggemann GP, Hoher J, Karamanidis K (2012) Reduced knee joint moment in ACL deficient patients at a cost of dynamic stability during landing. J Biomech 45(8):1387–1392. https://doi.org/10.1016/j.jbiomech.2012.02.029

    Article  PubMed  Google Scholar 

  97. Phillips N, van Deursen RW (2008) Landing stability in anterior cruciate ligament deficient versus healthy individuals: a motor control approach. Phys Ther Sport 9(4):193–201. https://doi.org/10.1016/j.ptsp.2008.06.010

    Article  PubMed  CAS  Google Scholar 

  98. Williams GN, Snyder-Mackler L, Barrance PJ, Buchanan TS (2005) Quadriceps femoris muscle morphology and function after ACL injury: a differential response in copers versus non-copers. J Biomech 38(4):685–693. https://doi.org/10.1016/j.jbiomech.2004.04.004

    Article  PubMed  Google Scholar 

  99. Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM (2008) Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med 27(3):383–404., vii. https://doi.org/10.1016/j.csm.2008.03.004

    Article  PubMed  Google Scholar 

  100. Beard DJ, Kyberd PJ, Fergusson CM, Dodd CAF (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg 75B(2):311–315

    Article  Google Scholar 

  101. Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22(1):89–104

    Article  PubMed  CAS  Google Scholar 

  102. Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22(1):69–74. https://doi.org/10.1016/j.gaitpost.2004.07.002

    Article  PubMed  Google Scholar 

  103. Relph N, Herrington L (2016) The effect of conservatively treated ACL injury on knee joint position sense. Int J Sports Phys Ther 11(4):536–543

    PubMed Central  PubMed  Google Scholar 

  104. Relph N, Herrington L, Tyson S (2014) The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy 100(3):187–195. https://doi.org/10.1016/j.physio.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  105. Arockiaraj J, Korula RJ, Oommen AT, Devasahayam S, Wankhar S, Velkumar S, Poonnoose PM (2013) Proprioceptive changes in the contralateral knee joint following anterior cruciate injury. Bone Joint J 95-B(2):188–191. https://doi.org/10.1302/0301-620X.95B2.30566

    Article  CAS  PubMed  Google Scholar 

  106. Ageberg E, Roberts D, Holmstrom E, Friden T (2005) Balance in single-limb stance in patients with anterior cruciate ligament injury: relation to knee laxity, proprioception, muscle strength, and subjective function. Am J Sports Med 33(10):1527–1535. https://doi.org/10.1177/0363546505274934

    Article  PubMed  Google Scholar 

  107. Chmielewski TL, Hurd WJ, Snyder-Mackler L (2005) Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. J Electromyogr Kinesiol 15(1):83–92. https://doi.org/10.1016/j.jelekin.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  108. Herrington L, Hatcher J, Hatcher A, McNicholas M (2009) A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. Knee 16(2):149–152. https://doi.org/10.1016/j.knee.2008.10.004

    Article  PubMed  Google Scholar 

  109. Ihara H, Takayama M, Fukumoto T (2008) Postural control capability of ACL-deficient knee after sudden tilting. Gait Posture 28(3):478–482. https://doi.org/10.1016/j.gaitpost.2008.03.009

    Article  PubMed  Google Scholar 

  110. Lee HM, Cheng CK, Liau JJ (2009) Correlation between proprioception, muscle strength, knee laxity, and dynamic standing balance in patients with chronic anterior cruciate ligament deficiency. Knee 16(5):387–391. https://doi.org/10.1016/j.knee.2009.01.006

    Article  PubMed  Google Scholar 

  111. Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M (2002) Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 73(3):330–334. https://doi.org/10.1080/000164702320155356

    Article  PubMed  Google Scholar 

  112. Katayama M, Higuchi H, Kimura M, Kobayashi A, Hatayama K, Terauchi M, Takagishi K (2004) Proprioception and performance after anterior cruciate ligament rupture. Int Orthop 28(5):278–281. https://doi.org/10.1007/s00264-004-0583-9

    Article  PubMed Central  PubMed  Google Scholar 

  113. Gokeler A, Benjaminse A, Hewett TE, Lephart SM, Engebretsen L, Ageberg E, Engelhardt M, Arnold MP, Postema K, Otten E, Dijkstra PU (2012) Proprioceptive deficits after ACL injury: are they clinically relevant? Br J Sports Med 46(3):180–192. https://doi.org/10.1136/bjsm.2010.082578

    Article  PubMed  Google Scholar 

  114. Park WH, Kim DK, Yoo JC, Lee YS, Hwang JH, Chang MJ, Park YS (2010) Correlation between dynamic postural stability and muscle strength, anterior instability, and knee scale in anterior cruciate ligament deficient knees. Arch Orthop Trauma Surg 130(8):1013–1018. https://doi.org/10.1007/s00402-010-1080-9

    Article  PubMed  Google Scholar 

  115. Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518

    Article  PubMed  CAS  Google Scholar 

  116. Bryant AL, Pua YH, Clark RA (2009) Morphology of knee extension torque-time curves following anterior cruciate ligament injury and reconstruction. J Bone Joint Surg Am 91(6):1424–1431. https://doi.org/10.2106/JBJS.H.01335

    Article  PubMed  Google Scholar 

  117. Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther 20(2):60–73

    Article  PubMed  CAS  Google Scholar 

  118. Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, Karlsson J (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14(8):778–788. https://doi.org/10.1007/s00167-006-0045-6

    Article  PubMed  Google Scholar 

  119. Salata MJ, Gibbs AE, Sekiya JK (2010) A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med 38(9):1907–1916. https://doi.org/10.1177/0363546510370196

    Article  PubMed  Google Scholar 

  120. Petty CA, Lubowitz JH (2011) Does arthroscopic partial meniscectomy result in knee osteoarthritis? A systematic review with a minimum of 8 years' follow-up. Arthroscopy 27(3):419–424. https://doi.org/10.1016/j.arthro.2010.08.016

    Article  PubMed  Google Scholar 

  121. McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Joint Surg Br 88(12):1549–1556. https://doi.org/10.1302/0301-620X.88B12.18140

    Article  PubMed  CAS  Google Scholar 

  122. Meunier A, Odensten M, Good L (2007) Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand J Med Sci Sports 17(3):230–237. https://doi.org/10.1111/j.1600-0838.2006.00547.x

    Article  PubMed  CAS  Google Scholar 

  123. Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints—part I: tibial surface of the knee. J Biomech Eng 105(3):216–225

    Article  PubMed  CAS  Google Scholar 

  124. Bourne RB, Finlay JB, Papadopoulos P, Andreae P (1984) The effect of medial meniscectomy on strain distribution in the proximal part of the tibia. J Bone Joint Surg Am 66(9):1431–1437

    Article  PubMed  CAS  Google Scholar 

  125. Pena E, Calvo B, Martinez MA, Palanca D, Doblare M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech (Bristol, Avon) 20(5):498–507

    Article  CAS  Google Scholar 

  126. Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, Maher SA (2010) Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am 92(6):1398–1408. https://doi.org/10.2106/JBJS.I.00539

    Article  PubMed  Google Scholar 

  127. Seedhom BB, Hargreaves DJ (1979) Transmission of the load in the knee joint with special reference to the role of the menisci. Part II. Experimental results, discussion, and conclusions. Eng Med 8:220–228

    Article  Google Scholar 

  128. Thompson WO, Thaete FL, Fu FH, Dye SF (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19:210–216

    Article  PubMed  CAS  Google Scholar 

  129. Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL (2008) Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res 26(5):673–684

    Article  PubMed  Google Scholar 

  130. Mow VC, Ratcliffe A, Chern KY, Kelly MA (1992) Structure and function relationships of the menisci of the knee. In: Mow VC, Arnoczky SP, Jackson DW (eds) Knee meniscus: basic and clinical foundations. Raven Press, Ltd, New York, pp 37–57

    Google Scholar 

  131. Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597. https://doi.org/10.1177/0363546510364402

    Article  PubMed  Google Scholar 

  132. Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC (1981) The role of joint load in knee stability. J Bone Joint Surg Am 63(4):570–585

    Article  PubMed  CAS  Google Scholar 

  133. Paletta GA, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25(5):692–698

    Article  PubMed  Google Scholar 

  134. Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 90(9):1922–1931. https://doi.org/10.2106/JBJS.G.00748

    Article  PubMed  Google Scholar 

  135. Durselen L, Vogele S, Seitz AM, Ignatius A, Friederich NF, Bauer G, Majewski M (2011) Anterior knee laxity increases gapping of posterior horn medial meniscal tears. Am J Sports Med 39(8):1749–1755. https://doi.org/10.1177/0363546511405504

    Article  PubMed  Google Scholar 

  136. Kelly BT, Potter HG, Deng XH, Pearle AD, Turner AS, Warren RF, Rodeo SA (2006) Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med 34(9):1464–1477

    Article  PubMed  Google Scholar 

  137. Wilson W, van Rietbergen B, van Donkelaar CC, Huiskes R (2003) Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J Biomech 36(6):845–851

    Article  PubMed  CAS  Google Scholar 

  138. Fetzer GB, Spindler KP, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Flanigan DC, Jones M, Kaeding CC, Marx RG, Matava MJ, McCarty EC, Parker RD, Wolcott M, Vidal A, Wolf BR, Wright RW (2009) Potential market for new meniscus repair strategies: evaluation of the MOON cohort. J Knee Surg 22(3):180–186

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36(2):290–297

    Article  PubMed  Google Scholar 

  140. Lyman S, Hidaka C, Valdez AS, Hetsroni I, Pan TJ, Do H, Dunn WR, Marx RG (2013) Risk factors for meniscectomy after meniscal repair. Am J Sports Med 41(12):2772–2778. https://doi.org/10.1177/0363546513503444

    Article  PubMed  Google Scholar 

  141. Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23(6):618–628

    Article  PubMed  Google Scholar 

  142. Streich NA, Friedrich K, Gotterbarm T, Schmitt H (2008) Reconstruction of the ACL with a semitendinosus tendon graft: a prospective randomized single blinded comparison of double-bundle versus single-bundle technique in male athletes. Knee Surg Sports Traumatol Arthrosc 16(3):232–238

    Article  PubMed  Google Scholar 

  143. Kennedy J, Jackson MP, O'Kelly P, Moran R (2010) Timing of reconstruction of the anterior cruciate ligament in athletes and the incidence of secondary pathology within the knee. J Bone Joint Surg Br 92(3):362–366. https://doi.org/10.1302/0301-620X.92B3.22424

    Article  PubMed  CAS  Google Scholar 

  144. Smith JP 3rd, Barrett GR (2001) Medial and lateral meniscal tear patterns in anterior cruciate ligament-deficient knees. A prospective analysis of 575 tears. Am J Sports Med 29(4):415–419

    Article  PubMed  Google Scholar 

  145. Tandogan RN, Taser O, Kayaalp A, Taskiran E, Pinar H, Alparslan B, Alturfan A (2004) Analysis of meniscal and chondral lesions accompanying anterior cruciate ligament tears: relationship with age, time from injury, and level of sport. Knee Surg Sports Traumatol Arthrosc 12(4):262–270. https://doi.org/10.1007/s00167-003-0398-z

    Article  PubMed  Google Scholar 

  146. Murrell GA, Maddali S, Horovitz L, Oakley SP, Warren RF (2001) The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med 29(1):9–14

    Article  PubMed  CAS  Google Scholar 

  147. Burks RT, Metcalf MH, Metcalf RW (1997) Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy 13(6):673–679

    Article  PubMed  CAS  Google Scholar 

  148. Barrack RL, Bruckner JD, Kniesl J, Inman WS, Alexander AH (1990) The outcome of nonoperatively treated complete tears of the anterior cruciate ligament in active young patients. Clin Orthop Relat Res 259:192–199

    Google Scholar 

  149. Bonamo JJ, Fay C, Firestone T (1990) The conservative treatment of the anterior cruciate deficient knee. Am J Sports Med 18(6):618–623

    Article  PubMed  CAS  Google Scholar 

  150. Buss DD, Min R, Skyhar M, Galinat B, Warren RF, Wickiewicz TL (1995) Nonoperative treatment of acute anterior cruciate ligament injuries in a selected group of patients. Am J Sports Med 23(2):160–165

    Article  PubMed  CAS  Google Scholar 

  151. Engebretsen L, Tegnander A (1990) Short-term results of the nonoperated isolated anterior cruciate ligament tear. J Orthop Trauma 4(4):406–410

    Article  PubMed  CAS  Google Scholar 

  152. Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP, Phelan D, Daniel D (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33(3):335–346

    Article  PubMed  Google Scholar 

  153. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg Am 65(2):163–174

    Article  PubMed  CAS  Google Scholar 

  154. Al-Hadithy N, Dodds AL, Akhtar KS, Gupte CM (2013) Current concepts of the management of anterior cruciate ligament injuries in children. Bone Joint J 95-B(11):1562–1569. https://doi.org/10.1302/0301-620X.95B11.31778

    Article  PubMed  CAS  Google Scholar 

  155. Frank JS, Gambacorta PL (2013) Anterior cruciate ligament injuries in the skeletally immature athlete: diagnosis and management. J Am Acad Orthop Surg 21(2):78–87. https://doi.org/10.5435/JAAOS-21-02-78

    Article  PubMed  Google Scholar 

  156. Frosch KH, Stengel D, Brodhun T, Stietencron I, Holsten D, Jung C, Reister D, Voigt C, Niemeyer P, Maier M, Hertel P, Jagodzinski M, Lill H (2010) Outcomes and risks of operative treatment of rupture of the anterior cruciate ligament in children and adolescents. Arthroscopy 26(11):1539–1550. https://doi.org/10.1016/j.arthro.2010.04.077

    Article  PubMed  Google Scholar 

  157. Henry J, Chotel F, Chouteau J, Fessy MH, Berard J, Moyen B (2009) Rupture of the anterior cruciate ligament in children: early reconstruction with open physes or delayed reconstruction to skeletal maturity? Knee Surg Sports Traumatol Arthrosc 17(7):748–755. https://doi.org/10.1007/s00167-009-0741-0

    Article  PubMed  Google Scholar 

  158. Kaeding CC, Flanigan D, Donaldson C (2010) Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy 26(11):1530–1538. https://doi.org/10.1016/j.arthro.2010.04.065

    Article  PubMed  Google Scholar 

  159. Lawrence JT, Argawal N, Ganley TJ (2011) Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sports Med 39(12):2582–2587. https://doi.org/10.1177/0363546511420818

    Article  PubMed  Google Scholar 

  160. Ludwig M, Atanda A Jr (2015) Management of anterior cruciate ligament tears in skeletally immature athletes. Phys Sportsmed 43(4):440–447. https://doi.org/10.1080/00913847.2015.1084213

    Article  PubMed  Google Scholar 

  161. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ (2014) Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med 42(11):2769–2776. https://doi.org/10.1177/0363546513510889

    Article  PubMed  Google Scholar 

  162. Vavken P, Murray MM (2011) Treating anterior cruciate ligament tears in skeletally immature patients. Arthroscopy 27(5):704–716. https://doi.org/10.1016/j.arthro.2010.11.062

    Article  PubMed Central  PubMed  Google Scholar 

  163. Anderson AF, Anderson CN (2015) Correlation of meniscal and articular cartilage injuries in children and adolescents with timing of anterior cruciate ligament reconstruction. Am J Sports Med 43(2):275–281. https://doi.org/10.1177/0363546514559912

    Article  PubMed  Google Scholar 

  164. Woods GW, O’Connor DP (2004) Delayed anterior cruciate ligament reconstruction in adolescents with open physes. Am J Sports Med 32(1):201–210

    Article  PubMed  Google Scholar 

  165. Swirtun LR, Renstrom P (2008) Factors affecting outcome after anterior cruciate ligament injury: a prospective study with a six-year follow-up. Scand J Med Sci Sports 18(3):318–324. https://doi.org/10.1111/j.1600-0838.2007.00696.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Barber-Westin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barber-Westin, S., Noyes, F.R. (2018). Consequences of Complete ACL Ruptures. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics