Skip to main content

Proximal Risk Factors for ACL Injury: Role of the Hip Joint and Musculature

  • Chapter
  • First Online:
ACL Injuries in the Female Athlete

Abstract

This chapter summarizes the role of the hip for potentially injurious knee loading and noncontact ACL injuries. Anatomical factors of the hip and knee are discussed with regard to their interdependence during functional activities. The influence of hip mechanics on knee potentially injurious knee loading during functional tasks is described. The biomechanical factors of the hip joint that are associated with stiff landing and cutting strategies (that contribute to greater knee loading) are described. Neuromuscular and muscular contributions to altered hip mechanics leading to ACL injuries are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467(4):1074–1082. https://doi.org/10.1007/s11999-008-0594-8

    Article  PubMed  Google Scholar 

  2. Delp SL, Hess WE, Hungerford DS, Jones LC (1999) Variation of rotation moment arms with hip flexion. J Biomech 32(5):493–501

    Article  CAS  PubMed  Google Scholar 

  3. Kernozek T, Torry M, Shelburne K, Durall CJ, Willson J (2013) From the gait laboratory to the rehabilitation clinic: translation of motion analysis and modeling data to interventions that impact anterior cruciate ligament loads in gait and drop landing. Crit Rev Biomed Eng 41(3):243–258

    Article  PubMed  Google Scholar 

  4. Zhang LQ, Xu D, Wang G, Hendrix RW (2001) Muscle strength in knee varus and valgus. Med Sci Sports Exerc 33(7):1194–1199

    Article  CAS  PubMed  Google Scholar 

  5. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    PubMed  CAS  Google Scholar 

  6. Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10(2):96–104. https://doi.org/10.1016/j.jsams.2006.05.015

    Article  PubMed  Google Scholar 

  7. Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012

    Article  PubMed  Google Scholar 

  8. Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567

    Article  CAS  PubMed  Google Scholar 

  9. Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218. https://doi.org/10.1097/BLO.0b013e31804d2339

    Article  PubMed  Google Scholar 

  10. Fukuda Y, Woo SL, Loh JC, Tsuda E, Tang P, McMahon PJ, Debski RE (2003) A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J Orthop Res 21(6):1107–1112. https://doi.org/10.1016/S0736-0266(03)00084-6

    Article  PubMed  Google Scholar 

  11. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483

    Article  PubMed  Google Scholar 

  12. Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon) 21(3):297–305. https://doi.org/10.1016/j.clinbiomech.2005.11.003

    Article  Google Scholar 

  13. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501. https://doi.org/10.1177/0363546504269591

    Article  PubMed  Google Scholar 

  14. Goetschius J, Smith HC, Vacek PM, Holterman LA, Shultz SJ, Tourville TW, Slauterbeck J, Johnson RJ, Beynnon BD (2012) Application of a clinic-based algorithm as a tool to identify female athletes at risk for anterior cruciate ligament injury: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med 40(9):1978–1984. https://doi.org/10.1177/0363546512456972

    Article  PubMed  PubMed Central  Google Scholar 

  15. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367

    Article  PubMed  Google Scholar 

  16. Sigward SM, Havens KL, Powers CM (2011) Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train 46(5):471–475

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sigward SM, Pollard CD, Powers CM (2012) The influence of sex and maturation on landing biomechanics: implications for anterior cruciate ligament injury. Scand J Med Sci Sports 22(4):502–509. https://doi.org/10.1111/j.1600-0838.2010.01254.x

    Article  PubMed  CAS  Google Scholar 

  18. Pollard CD, Sigward SM, Powers CM (2007) Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med 17(1):38–42. https://doi.org/10.1097/JSM.0b013e3180305de8

    Article  PubMed  Google Scholar 

  19. Devita P, Skelly WA (1992) Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 24(1):108–115

    Article  CAS  PubMed  Google Scholar 

  20. Pollard CD, Sigward SM, Powers CM (2010) Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon) 25(2):142–146. https://doi.org/10.1016/j.clinbiomech.2009.10.005

    Article  Google Scholar 

  21. Shultz SJ, Nguyen AD, Leonard MD, Schmitz RJ (2009) Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc 41(4):857–866. https://doi.org/10.1249/MSS.0b013e3181e3b3f

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585. https://doi.org/10.1016/j.jbiomech.2010.11.013

    Article  PubMed  Google Scholar 

  23. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI (2009) The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med 37(10):1996–2002

    Article  PubMed  Google Scholar 

  24. O'Kane JW, Tencer A, Neradilek M, Polissar N, Sabado L, Schiff MA (2016) Is knee separation during a drop jump associated with lower extremity injury in adolescent female soccer players? Am J Sports Med 44(2):318–323. https://doi.org/10.1177/0363546515613076

    Article  PubMed  Google Scholar 

  25. Golden GM, Pavol MJ, Hoffman MA (2009) Knee joint kinematics and kinetics during a lateral false-step maneuver. J Athl Train 44(5):503–510. https://doi.org/10.4085/1062-6050-44.5.503

    Article  PubMed  PubMed Central  Google Scholar 

  26. McLean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon) 20(8):863–870. https://doi.org/10.1016/j.clinbiomech.2005.05.007

    Article  Google Scholar 

  27. Sigward SM, Powers CM (2007) Loading characteristics of females exhibiting excessive valgus moments during cutting. Clin Biomech (Bristol, Avon) 22(7):827–833

    Article  Google Scholar 

  28. Havens KL, Sigward SM (2015) Whole body mechanics differ among running and cutting maneuvers in skilled athletes. Gait Posture 42(3):240–245. https://doi.org/10.1016/j.gaitpost.2014.07.022

    Article  PubMed  Google Scholar 

  29. Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ, Russo KA (2007) The effect of technique change on knee loads during sidestep cutting. Med Sci Sports Exerc 39(10):1765–1773. https://doi.org/10.1249/mss.0b013e31812f56d1

    Article  PubMed  Google Scholar 

  30. Havens KL, Sigward SM (2015) Cutting mechanics: relation to performance and anterior cruciate ligament injury risk. Med Sci Sports Exerc 47(4):818–824. https://doi.org/10.1249/MSS.0000000000000470

    Article  PubMed  Google Scholar 

  31. Sigward SM, Cesar GM, Havens KL (2015) Predictors of frontal plane knee moments during side-step cutting to 45 and 110 degrees in men and women: implications for anterior cruciate ligament injury. Clin J Sport Med 25(6):529–534. https://doi.org/10.1097/JSM.0000000000000155

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fredericson M, Cookingham CL, Chaudhari AM, Dowdell BC, Oestreicher N, Sahrmann SA (2000) Hip abductor weakness in distance runners with iliotibial band syndrome. Clin J Sport Med 10(3):169–175

    Article  CAS  PubMed  Google Scholar 

  33. Ireland ML, Willson JD, Ballantyne BT, Davis IM (2003) Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther 33(11):671–676

    Article  PubMed  Google Scholar 

  34. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934

    Article  PubMed  Google Scholar 

  35. Niemuth PE, Johnson RJ, Myers MJ, Thieman TJ (2005) Hip muscle weakness and overuse injuries in recreational runners. Clin J Sport Med 15(1):14–21

    Article  PubMed  Google Scholar 

  36. Souza RB, Powers CM (2009) Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 39(1):12–19. https://doi.org/10.2519/jospt.2009.2885

    Article  PubMed  Google Scholar 

  37. Powers CM (2003) The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther 33(11):639–646. https://doi.org/10.2519/jospt.2003.33.11.639

    Article  PubMed  Google Scholar 

  38. Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361. https://doi.org/10.1177/0363546515616237

    Article  PubMed  Google Scholar 

  39. Baldon Rde M, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV (2011) Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J Appl Biomech 27(3):223–232

    Article  PubMed  Google Scholar 

  40. Crossley KM, Zhang WJ, Schache AG, Bryant A, Cowan SM (2011) Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med 39(4):866–873. https://doi.org/10.1177/0363546510395456

    Article  PubMed  Google Scholar 

  41. Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM (2006) Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech 22(1):41–50

    Article  PubMed  Google Scholar 

  42. Jacobs C, Uhl TL, Seeley M, Sterling W, Goodrich L (2005) Strength and fatigability of the dominant and nondominant hip abductors. J Athl Train 40(3):203–206

    PubMed  PubMed Central  Google Scholar 

  43. Stickler L, Finley M, Gulgin H (2015) Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys Ther Sport 16(1):66–71. https://doi.org/10.1016/j.ptsp.2014.05.002

    Article  PubMed  Google Scholar 

  44. Beutler A, de la Motte S, Marshall S, Padua D, Boden B (2009) Muscle strength and qualitative jump-landing differences in male and female military cadets: the jump-ACL study. J Sports Sci Med 8:663–671

    PubMed  PubMed Central  Google Scholar 

  45. Sigward SM, Powers CM (2006) The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon) 21(1):41–48

    Article  Google Scholar 

  46. Nilstad A, Krosshaug T, Mok KM, Bahr R, Andersen TE (2015) Association between anatomical characteristics, knee laxity, muscle strength, and peak knee valgus during vertical drop-jump landings. J Orthop Sports Phys Ther 45(12):998–1005. https://doi.org/10.2519/jospt.2015.5612

    Article  PubMed  Google Scholar 

  47. Souza RB, Powers CM (2009) Predictors of hip internal rotation during running: an evaluation of hip strength and femoral structure in women with and without patellofemoral pain. Am J Sports Med 37(3):579–587. https://doi.org/10.1177/0363546508326711

    Article  PubMed  Google Scholar 

  48. Homan KJ, Norcross MF, Goerger BM, Prentice WE, Blackburn JT (2013) The influence of hip strength on gluteal activity and lower extremity kinematics. J Electromyogr Kinesiol 23(2):411–415. https://doi.org/10.1016/j.jelekin.2012.11.009

    Article  PubMed  Google Scholar 

  49. Stearns KM, Powers CM (2014) Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med 42(3):602–609. https://doi.org/10.1177/0363546513518410

    Article  PubMed  Google Scholar 

  50. Mizner RL, Kawaguchi JK, Chmielewski TL (2008) Muscle strength in the lower extremity does not predict postinstruction improvements in the landing patterns of female athletes. J Orthop Sports Phys Ther 38(6):353–361. https://doi.org/10.2519/jospt.2008.2726

    Article  PubMed  Google Scholar 

  51. Willson JD, Kernozek TW, Arndt RL, Reznichek DA, Scott Straker J (2011) Gluteal muscle activation during running in females with and without patellofemoral pain syndrome. Clin Biomech (Bristol, Avon) 26(7):735–740. https://doi.org/10.1016/j.clinbiomech.2011.02.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Sigward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sigward, S.M., Pollard, C.D. (2018). Proximal Risk Factors for ACL Injury: Role of the Hip Joint and Musculature. In: Noyes, F., Barber-Westin, S. (eds) ACL Injuries in the Female Athlete. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56558-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56558-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56557-5

  • Online ISBN: 978-3-662-56558-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics