Skip to main content

Comparison of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gaussian Process for Machine Learning (GPML) Algorithms for the Prediction of Norovirus Concentration in Drinking Water Supply

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 10680))

Abstract

Monitoring of Norovirus in drinking water supply is a complicated, rather expensive, process. Norovirus represent a leading cause of acute gastroenteritis in most developed countries. Modeling of general microbial occurrence in drinking water is a very active field of study and provides reliable information for predicting microbial risks in drinking water. In this work, adaptive neuro-fuzzy inference system (ANFIS) and Gaussian Process for Machine Learning (GPML) are proposed as predicting models for the total number of Norovirus in raw surface water in terms of water quality parameters such as water pH, turbidity, conductivity, temperature and rain. The predictive models were based on data from Nødre Romrike Vannverk water treatment plant in Oslo, Norway. Based on the model performance indices used in this study, the GPML model showed comparable accuracy to the ANFIS model. However, the ANFIS model generally demonstrated more superior prediction ability of the number of Norovirus in drinking water, with lower MSE and MAE values relative to the GPML model. In addition, the ability of the ANFIS model to explain potential effects of interactions among the water quality variables on the number of Norovirus in the raw water makes the technique more efficient for use in water quality modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S.M., Hall, A.J., Robinson, A.E., Verhoef, L., Premkumar, P., Parashar, U.D.: Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect. Dis. 14(8), 725–730 (2014)

    Article  Google Scholar 

  2. Brion, G.M., Neelakantan, T.R., Lingireddy, S.: Using neural networks to predict peak Cryptosporidium concentrations. J. Am. Water Works Assoc. (AWWA) 93(1), 99–105 (2001)

    Google Scholar 

  3. Bartsch, S.M., Lopman, B.A., Ozawa, S., Hall, A.J., Lee, B.Y.: Global economic burden of norovirus gastroenteritis. PLoS One 11(4), e0151219 (2016). https://doi.org/10.1371/journal.pone.0151219

    Article  Google Scholar 

  4. Altintas, Z., Gittens, M., Pocock, J., Tothill, I.E.: Biosensors for waterborne viruses: detection and removal. Biochimie 115(2015), 144–154 (2015)

    Article  Google Scholar 

  5. Wigginton, K.R., Kohn, T.: Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr. Opin. Virol. 2(1), 84–89 (2012)

    Article  Google Scholar 

  6. Xagoraraki, I., Yin, Z., Svambayev, Z.: Fate of viruses in water systems. J. Environ. Eng. 140(7), 04014020 (2014)

    Article  Google Scholar 

  7. da Silva, A.K., Le Saux, J.C., Parnaudeau, S., Pommepuy, M., Elimelech, M., Le Guyader, F.S.: Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Appl. Environ. Microbiol. 73(24), 7891–7897 (2007)

    Article  Google Scholar 

  8. Laverick, M.A., Wyn-Jones, A.P., Carter, M.J.: Quantitative RT-PCR for the enumeration of noroviruses (Norwalk-like viruses) in water and sewage. Lett. Appl. Microbiol. 39(2), 127–136 (2004)

    Article  Google Scholar 

  9. Westrell, T., Teunis, P., van den Berg, H., Lodder, W., Ketelaars, H., Stenström, T.A., de Roda Husman, A.M.: Short-and long-term variations of norovirus concentrations in the Meuse River during a 2-year study period. Water Res. 40(14), 2613–2620 (2006)

    Article  Google Scholar 

  10. Barrett, M., Fitzhenry, K., O’Flaherty, V., Dore, W., Keaveney, S., Cormican, M., Clifford, E.: Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. Sci. Total Environ. 568, 1026–1036 (2016)

    Article  Google Scholar 

  11. Lodder, W.J., de Roda Husman, A.M.: Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Appl. Environ. Microbiol. 71(3), 1453–1461 (2005)

    Article  Google Scholar 

  12. Ueki, Y., Sano, D., Watanabe, T., Akiyama, K., Omura, T.: Norovirus pathway in water environment estimated by genetic analysis of strains from patients of gastroenteritis, sewage, treated wastewater, river water and oysters. Water Res. 39(18), 4271–4280 (2005)

    Article  Google Scholar 

  13. Chen, H., Hu, Y.: Molecular diagnostic methods for detection and characterization of human noroviruses. Open Microbiol. J. 10(1), 78–89 (2016)

    Article  Google Scholar 

  14. Lermontov, A., Yokoyama, L., Lermontov, M., Machado, M.A.S.: River quality analysis using fuzzy water quality index: Riberia do Iguape river watershed, Brazil. Ecol. Indic. 9(2009), 1188–1197 (2009)

    Article  Google Scholar 

  15. Andreas, T., Olof, B., Bertil, F.: Precipitation effects on microbial pollution in a river: lag structures and seasonal effect modification. PLoS One 9(5), e98546 (2014)

    Article  Google Scholar 

  16. Bruggink, L.D., Marshall, J.A.: Norovirus epidemics are linked to two distinct sets of controlling factors. Int. J. Infect. Dis. 13(2009), e125–e126 (2009)

    Article  Google Scholar 

  17. Sokolova, E., Pettersson, T.J.R., Bergstedt, O., Hermansson, M.: Hydrodynamic modelling of the microbial water quality in a drinking water source as input for risk reduction management. J. Hydrol. 497(2013), 15–23 (2013)

    Article  Google Scholar 

  18. Icaga, Y.: Fuzzy evaluation of water quality classification. Ecol. Ind. 7(2007), 710–718 (2007)

    Article  Google Scholar 

  19. Petterson, S.R., Stenström, T.A., Ottoson, J.: A theoretical approach to using faecal indicator data to model norovirus concentration in surface water for QMRA: Glomma River, Norway. Water Res. 91, 31–37 (2016)

    Article  Google Scholar 

  20. Marshall, J.A., Bruggink, L.D.: The dynamics of norovirus outbreak epidemics: recent insights. Int. J. Environ. Res. Public Health 8(4), 1141–1149 (2011). https://doi.org/10.3390/ijerph8041141

    Article  Google Scholar 

  21. Mohammed, H., Hameed, I.A., Seidu, R.: Adaptive neuro-fuzzy inference system for predicting norovirus in drinking water supply. In: International Conference on Informatics, Health & Technology (ICIHT), pp. 1–6. IEEE (2017)

    Google Scholar 

  22. Bisht, D.C.S., Jangid, A.: Discharge modelling using adaptive neuro-fuzzy inference system. Int. J. Adv. Sci. Technol. 31(2011), 99–114 (2011)

    Google Scholar 

  23. Chowdhury, S., Champagne, P., McLellan, P.J.: Models for predicting disinfection by product (DBP) formation in drinking waters: a chronological review. Sci. Total Environ. 407(14), 4189–4206 (2009)

    Article  Google Scholar 

  24. Heddam, S., Bermad, A., Dechemi, N.: ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ. Monit. Assess. 184(4), 1953–1971 (2012)

    Article  Google Scholar 

  25. Sahu, M., Mahapatra, S.S., Sahu, H.B., Patel, R.K.: Prediction of water quality index using neuro fuzzy inference system. Water Qual. Exposure Health 3(3–4), 175–191 (2011)

    Article  Google Scholar 

  26. Jang, J.S.R.: ANFIS: adaptive network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(1993), 665–685 (1993)

    Article  Google Scholar 

  27. Negnevitsky, M.: Artifial Intelligence: A Guide to Intelligent Systems, 3rd edn., pp. 277–285. Pearson (2005)

    Google Scholar 

  28. VISK. http://www.norskvann.no/, http://www.nrva.no/, http://visk.nu/. Accessed Oct 2016

  29. Grøndahl-Rosado, R.C., Tryland, I., Myrmel, M., Aanes, K.J., Robertson, L.J.: Detection of microbial pathogens and indicators in sewage effluent and river water during the temporary interruption of a wastewater treatment plant. Water Qual. Exposure Health 4(3), 155–159 (2014)

    Article  Google Scholar 

  30. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  31. Nickischm, H., Rasmussen, C.E.: Approximations for binary Gaussian process classification. J. Mach. Learn. Res. 9, 2035–2078 (2008)

    MATH  MathSciNet  Google Scholar 

  32. Rasmussen, C.E., Williams, C.K.I.: Gaussian Process for Machine Learning. The MIT Press (2006). ISBN 026218253X, Matlab code version 4.0 http://gaussianprocess.org/gpml/code/matlab/doc/index.html. Accessed 15 Apr 2017

Download references

Acknowledgements

The authors wish to thank the managers of the Nødre Romrike Water Treatment Plant in Oslo for the provision of required data. Thanks to Ricardo Rosado and Mette Myrmel for providing the Norovirus data. This work is part of the project KLIMAFORSK funded by the Research Council of Norway (Project No: 244147/E10). The authors would like to express their sincere thanks to the editor and anonymous reviewers for their suggestions and comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, H., Hameed, I.A., Seidu, R. (2017). Comparison of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gaussian Process for Machine Learning (GPML) Algorithms for the Prediction of Norovirus Concentration in Drinking Water Supply. In: Hameurlain, A., Küng, J., Wagner, R., Sakr, S., Razzak, I., Riyad, A. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXV. Lecture Notes in Computer Science(), vol 10680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56121-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56121-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56120-1

  • Online ISBN: 978-3-662-56121-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics