Skip to main content

Interpretation of SAR Imagery

  • Chapter
  • First Online:
Remote Sensing Geology

Abstract

The technique of SAR imaging and the various aerial and space-borne SAR sensors have been discussed in the preceding chapter. The radar response opens up new avenues for discriminating and mapping Earth materials, as the radar signal provides a ‘new look’ at the ground. SAR images possess a different type of geometric distortion, and therefore due care and expertise are required. Factors affecting SAR signal include: power transmitted, antenna gain, radar wavelength, beam polarization, look angle, aspect angle, slant range, and ground surface characteristics, particularly surface roughness and complex dielectric constant. Polarimetry and SAR tomography are new emerging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berlin GL, Schaber GG, Horstman KC (1980) Possible fault detection in Cottonball Basin, California: an application of radar remote sensing. Remote Sens Environ 10:33–42

    Article  Google Scholar 

  • Bernard R, Taconet O, Vidal-Madjar D, Thony JL, Vauclin M, Chapoton A, Wattrelot F, Lebrun A (1984) Comparison of three in-situ surface soil moisture measurements and application to C-band scatterometer calibration. IEEE Trans Geosc Remote Sens GE-22(4):388–394

    Google Scholar 

  • Blom RG, Crippen RE, Elachi C (1984) Detection of subsurface features in SEASAT radar images of Means Valley, Mojave Desert, California. Geology 12:346–349

    Article  Google Scholar 

  • Blom RG, Schenck LR, Alley RE (1987) What are the best radar wavelengths, incidence angles, and polarization for discrimination among lava flows and sedimentary rocks? a statistical approach. IEEE Trans Geosci Remote Sens GE-25(2):208–212

    Google Scholar 

  • Buchroithner MF, Granica K (1997) Applications of imaging radar in hydro-geological disaster management—a review. Remote Sens Rev 16:1–134

    Article  Google Scholar 

  • Croft FC, Faust NL, Holcomb DW (1993) Merging of radar and VIS/IR imagery. In: Proceedings of 9th thematic conference on geologic remote sensing, Pasadena, CA, 8–11 February, pp 379–381

    Google Scholar 

  • Curran PJ (1985) Principles of remote sensing. Longman, London

    Google Scholar 

  • Daily MI (1983) Hue-saturation-intensity split-spectrum processing of Seasat radar imagery. Photogramm Eng Remote Sens 49:349–355

    Google Scholar 

  • De Loor GP (1981) The observation of tidal parameters, currents and bathymetry with SLAR imagery of the sea. IEEE J Oceanic Eng 6:124–129

    Article  Google Scholar 

  • Dellwig LF, Moore RK (1966) The geological value of simultaneously produced like-and cross-polarized radar imagery. J Geophy Res 71:3597–3601

    Article  Google Scholar 

  • Elachi C (1980) Spacebome imaging radar: geo1ogic and oceanographic applications. Science 209(4461):1073–1082

    Article  Google Scholar 

  • Eppes TA, Rouse JW Jr (1974) Viewing-angle effects in radar images. Photogramm Eng 40:169–173

    Google Scholar 

  • Evans DL, Farr TG, Ford JP, Thompson TW, Wemer CL (1986) Multipolarization radar images for geologie mapping and vegetation discrimination. IEEE Trans Geosci Remott Sens 24:246–257

    Article  Google Scholar 

  • Ford JP (1998) Radar geology. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar. Manual of remote sensing, 3rd edn, vol 2. Wiley, New York, pp 511–565

    Google Scholar 

  • Ford JP, Cimino JB, Elachi C (1983) Space shuttle Columbia views the world with imaging radar: the SIR-A experiment. Jet Propulsion Lab Publication No 82–95, Pasadena, CA, 179 p

    Google Scholar 

  • Fornaro G, Pauciullo A, Reale D, Zhu X, Bamler R (2012) SAR tomography: an advanced tool for 4D spaceborne radar scanning with application to imaging and monitoring of cities and single buildings. IEEE Geosci Remote Sens Newslett 10–18

    Google Scholar 

  • Kasischke ES, Schuchman AR, Lyzenga RD, Meadows AG (1983) Detection of bottom features on Seasat synthetic aperture radar imagery. Photogram Eng Remote Sens 49:1341–1353

    Google Scholar 

  • Koopmans BN (1983) Spacebome imaging radars: present and future. ITCJ 3:223–231

    Google Scholar 

  • Leberl FW (1998) Radargrammetry. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar, manual of remote sensing, vol 2, 3rd edn. Wiley, New York, pp 183–269

    Google Scholar 

  • Lewis AJ, Henderson FM (1998) Radar fundamentals: the geoscience perspective. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar. Manual of remote sensing, 3rd ed, vo1 2, Wiley, New York, pp 131–181

    Google Scholar 

  • MacDonald HC (1969a) Geologic evaluation of radar imagery from Darien Province, Panama. Mod Geol 1:1–63

    Google Scholar 

  • MacDonald HC (1969b) The influence of radar look direction on the detection of selected geologic features. In: Proceedings of 6th international symposium on remote sensing of environment, Ann Arbor, MI, pp 637–650

    Google Scholar 

  • MacDonald HC (1980) Techniques and applications of imaging radars. In: Siegal BS, Gillespie AR (eds) Remote sensing in geology. Wiley, New York, pp 297–336

    Google Scholar 

  • MacDonald HC, Waite WP (1973) Imaging radars provide terrain texture and roughness parameters in semi-arid environments. Mod Geol 4:145–158

    Google Scholar 

  • Moreira A, Prats-Iraola P, Younis M, Krieger G, Hajnsek I, Papathanassiou KP (2013) A tutorial on synthetic aperture radar. IEEE Geosci Remote Sens Mag, pp 1–43, doi:10.1109/MGRS.2013.2248301

  • Naraghi M, Stromberg W, Daily M (1983) Geometric rectification of radar imagery using digital elevation models. Photogram Eng Remote Sens 49:195–199

    Google Scholar 

  • Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39(11):2352–2363

    Article  Google Scholar 

  • Peak WH, Oliver TC (1971) The response of terrestrial surfaces at microwave frequencies. Ohio State Univ Electrosic Lab 2440-7 Tech Rep AFAL-TR70-301, p 255

    Google Scholar 

  • Ranson KJ, Sun G (1994) Northern forest classification using temporal multifrequency and multipolarization SAR images. Remote Sens Environ 47(2):142–153

    Article  Google Scholar 

  • Reigber A, Moreira A (2000) First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 38(5):2142–2152

    Article  Google Scholar 

  • Sabins FF Jr (1983) Geologic interpretation of space shuttle radar images of Indonesia. Am Assoc Petrol Geol Bull 67:2076–2099

    Google Scholar 

  • Sabins FF Jr (1987) Remote sensing principles and interpretation. 2nd edn, Freeman, San Francisco, 449 pp

    Google Scholar 

  • Schaber GG, Berlin GL, Brown WE Jr (1976) Variations in surface roughness within Death Valley, Califomia, geologic evaluation on 25-cm wavelength radar images. Geol Soc Am Bull 87:29–41

    Article  Google Scholar 

  • Trevett JW (1986) Imaging radar for resources surveys. Chapman and Hall, London, p 313

    Book  Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing—active and passive, vol II, Radar remote sensing and surface scattering and emission theory. Addison-Wesley, Reading, USA

    Google Scholar 

  • Ulaby FT, Brisco B, Dobson MC (1983) Improved spatial mapping of rainfall events with spaceborne SAR imagery. IEEE Trans Geosci Remote Sens GE-21:118–121

    Google Scholar 

  • Wang JR, Schmugge TJ, Gould WI, Glazar WS, Fuchs JE, McMurtrey JE (1982) A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields. Geophys Res Lett 19:416–419

    Article  Google Scholar 

  • Woodhouse IH (2006) Introduction to microwave remote sensing. CRC Press, USA, 400 p

    Google Scholar 

  • Zebker HA, van Zyl JJ, Held DN (1987) Imaging polarimetry from wave synthesis. J Geophys Res 92 (Bl):683–701

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.P. (2018). Interpretation of SAR Imagery. In: Remote Sensing Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55876-8_16

Download citation

Publish with us

Policies and ethics