Skip to main content

Imaging Spectroscopy

  • Chapter
  • First Online:
Remote Sensing Geology

Abstract

Imaging spectroscopy can be defined as acquisition of images in hundreds of contiguous, registered, spectral bands such that for each pixel a radiance spectrum can be derived. The basic concepts and general terminology such as continuum and depth of absorption have been adapted from spectroscopy. Various high resolution spectral features of minerals studied in laboratory form the backbone of imaging spectrometry data interpretation. A number of aerial imaging spectrometer sensors have been flown by different countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113:711–715

    Article  Google Scholar 

  • Bierwirth P, Huston D, Blewett R (2002) Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia. Econ Geol 97:819–826

    Article  Google Scholar 

  • Bishop CA, Liu JG, Mason PJ (2011) Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province China. Int J Remote Sens 32(9):2409–2426

    Article  Google Scholar 

  • Campbell NA (1996) The decorrelation stretch transform. Int J Remote Sens 17:1939–1949

    Article  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz AN (ed) Remote sensing for the Earth sciences, manual of remote sensing, vol 3, 3rd edn. Am Soc Photogramm Remote Sens. Wiley, London, pp 3–58

    Google Scholar 

  • Chang SH, Collins W (1983) Confirmation of the airbome biogeophysical mineral exploration technique using laboratory methods. Econ Geol 78:723–736

    Article  Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340

    Article  Google Scholar 

  • Clark RN, King TVV, Klejwa M, Swayze G, Vergo N (1990a) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res 95:12653–12680

    Article  Google Scholar 

  • Clark RN, Gallagher AJ, Swayze GA (1990b) Material absorption band depth mapping of imaging spectrometer data using complete band shape least-squares bit with library reference spectra. In: Proceedings 2nd airborne visible infrared imaging spectrometer (AVIRIS) workshop, JPL Publ 90–54, Jet propulsion Laboratory, California Inst Tech, Pasadena, CA, pp 176–186

    Google Scholar 

  • Dickerhof C et al (1999) Mineral identification and lithological mapping on the Island of Naxos (Greece) using DIAS 7915 hyperspectral data. EARSeL Adv Remote Sens 1(1):255–273

    Google Scholar 

  • Farrand WH, Harsanyi JC (1997) Mapping the distribution of mine tailings in the Coeur d’ Alene River valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 59:64–76

    Article  Google Scholar 

  • Goetz AFH, Vane G, Solomon J, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228:1147–1153

    Article  Google Scholar 

  • Green RO (1992) Determination of the in-flight spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (A VIRIS). In: Toselli F, Bodechtel J (eds) Imaging spectrometry: fundamentals and prospective applications. Kluwer, Dordrecht, pp 103–123

    Google Scholar 

  • Green AA, Berman M, Switzer P, Graig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74

    Article  Google Scholar 

  • Goetz AFH (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113:S5–S16

    Article  Google Scholar 

  • Goetz AFH, Rowan LC (1981) Geologic remote sensing. Science 211:781–791

    Google Scholar 

  • Goetz AFH, Srivastava V (1985) Mineralogic mapping in the Cuprite mining district, Nevada. In: Proceedings of the airborne imaging spectrometer data analysis workshop. JPL Publ 85–41, Jet Propulsion Laboratory, Pasadena, CA, pp 22–31

    Google Scholar 

  • Hoefen TM, Knepper DH Jr, Giles SA (2011) Analysis of imaging spectrometer data for the Daykundi area of interest. In: Peters SG et al (eds) Summaries of Important areas for mineral investment and production opportunities of nonfuel minerals in Afghanistan. US Geological Survey, Reston, Virginia, pp 314–339

    Google Scholar 

  • Ichoku C, Karnieli A (1996) A review of mixture modeling teehniques for sub-pixel land cover estimation. Remote Sens Rev 13:161–186

    Article  Google Scholar 

  • Jensen RR, Yang C (2009) Hyperspectral remote sensing—Sensors and applications. In: Jackson MW (ed) Earth observing platforms and sensors, manual of remote sensing 3rd ed. Vol. 1.1, Amer Soc Photog Remote Sens (ASPRS), Bethesda, Md., pp 205–224

    Google Scholar 

  • Johnson PE, Smith MO, Taylor-George S, Adams JB (1983) A semiempricial method for analysis of the ref1ectance spectra of binary mineral mixtures. J Geophys Res 88(B4):3557–3561

    Article  Google Scholar 

  • Kokaly RF et al (2017) USGS Spectral Library Version 7: U.S. geological survey data series 1035, 61 p, https://doi.org/10.3133/ds1035

  • Kruse FA (1997) Characterization of active hot-springs environments using multispectral and hyperspectral remote sensing. In: Proceedings 12th International Conference and Workshops on applied Geologic Remote Sensing, Vol I, Env Res lust Michigan, Ann Arbor, Mich, pp 214–221

    Google Scholar 

  • Kruse FA, Calvin WM, Seznec O (1988) Automated extraction of absorption features from airborne visible/infrared imaging spectrometer (A VIRIS) and Geophysical Environmental Research imaging spectrometer (GERIS) data. In: Proc A VIRIS Performance Evaluation Workshop, JPL Publ 88-38, Jet Propulsion Laboratory, California lust Tech, Pasadena, CA, pp 62–75

    Google Scholar 

  • Kruse FA, Kierein-Young KS, Boardman JW (1990) Mineral mapping at cuprite, Nevada with a 63-channel imaging spectrometer. Photogram Eng Remote Sens 56(1):83–92

    Google Scholar 

  • Kruse FA, Letkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  • Kusuma KN, Ramakrishnan D, Pandalai HS (2012) Spectral pathways for effective delineation of high-grade bauxites: a case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data. Int J Remote Sens 33(22):7273–7290

    Article  Google Scholar 

  • Meyer P (1994) A parametric approach for the geocoding of airborne visible/lnfrared lmaging spectrometer (AVIRIS) data in rugged terrain. Remote Sens Environ 49:118–130

    Article  Google Scholar 

  • Mustard JF, Sunshine JM (1999) Spectral analysis for Earth science: investigations using remote sensing data. In: Rencz AN (ed) Remote sensing for the earth sciences, manual of remote sensing, vol 3, 3rd edn. Am Soc Photogramm Remote Sens. Wiley, New York, pp 251–306

    Google Scholar 

  • Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891

    Google Scholar 

  • Rast M, Hook SJ, Elvidge CD, Alley RE (1991) An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data. Photogram Eng Remote Sens 57:1303–1309

    Google Scholar 

  • Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1–2.5 µm) Spectra of Minerals. Johns Hopkins University Press, Baltimore, pp 1–267

    Google Scholar 

  • Shang JL, Morris B, Howarth P, Levesque J, Staenz K, Neville B (2009) Mapping mine tailing surface mineralogy using hyperspectral remote sensing. Canad J Remote Sens 35:S126–S141

    Article  Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (eds) (2012) Hyperspectral remote sensing of vegetation, CRC press. Taylor & Francis, Florida

    Google Scholar 

  • Thompson AJB, Thompson JFH (1996) Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Mineral Deposits Division, p. 119

    Google Scholar 

  • Van Der Meer FD et al (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14:112–128

    Article  Google Scholar 

  • Vane G, Goetz AFH (1988) Terrestrial imaging spectroscopy. Remote Sens Environ 24:129

    Article  Google Scholar 

  • van der Meer F, Bakker W (1997) CCSM: cross correlogram spectral matching. Int J Remote Sens 18:1197–1201

    Article  Google Scholar 

  • van der Meer F, Bakker W (1998) Validated surface mineralogy from high-spectral resolution remote sensing: a review and a novel approach applied to gold exploration using AVIRIS data. Terra Nova 10:112–119

    Article  Google Scholar 

  • van der Meer FD, de Jong SM (2001) Imaging spectrometry: basic analytical techniques. In imaging spectrometry: basic principles and prospective applications. Springer, Dordrecht

    Google Scholar 

  • Vane G, Goetz AFH, Wellman JB (1983) Airborne imaging spectrometer: a new tool for remote sensing. In: Proceedings of the IEEE international geoscience remote sensing symposium (IGARSS) F A-4:6.1–6.5

    Google Scholar 

  • Van Ruitenbeek FJA, Cudahy TJ, Van der Meer FD, Hale M (2012) Characterization of the hydrothermal systems associated with Archean VMS-mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data. Ore Geol Rev 45:33–46

    Article  Google Scholar 

  • Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG, Porter (1993) The airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens Environ 44:127–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.P. (2018). Imaging Spectroscopy. In: Remote Sensing Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55876-8_14

Download citation

Publish with us

Policies and ethics