Skip to main content

Atmospheric Corrections

  • Chapter
  • First Online:
Remote Sensing Geology
  • 2825 Accesses

Abstract

As the EM radiation passes through the atmosphere, it undergoes modification in intensity due to atmospheric interaction, viz. selective scattering, absorption and emission. The main objective of atmospheric corrections is to retrieve the realistic surface reflectance or emittance values of a target from remotely sensed image data. In the solar reflection region, atmospheric scattering is the dominant cause of path radiance. In the thermal infrared region, atmospheric window is used to minimize the effect of atmospheric emission. Different types of procedures are used for atmospheric correction that include empirical-statistical procedures and radiative transfer modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspinall RJ, Marcus WA, Boardman JW (2002) Considerations in collecting, processing, and analysing high spatial resolution hyperspectral data for environmental investigations. J Geograph Syst 4:15–29

    Article  Google Scholar 

  • Ben-Dor E, Kindel B, Goetz AFH (2004) Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data. Remote Sens Environ 90:389–404

    Article  Google Scholar 

  • Berk A, Anderson G, Acharya P, Shettle E (2008) MODTRAN 5.2.0.0 user’s manual. Air Force Geophysics Laboratory, Hanscom, AFB, MA, US

    Google Scholar 

  • Berk A, Bernstein LS, Robertson DC (1989) MODTRAN: a moderate resolution model for LOWTRAN7. Tech Rep GL-TR-89-0122, Geophysics Laboratory, Bedford, Mass

    Google Scholar 

  • Berk A, Conforti P, Kennett R, Perkins T, Hawes F, van den Bosch J (2014) MODTRAN6: a major upgrade of the MODTRAN radiative transfer code. Proceedings SPIE 9088, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XX, 90880H (13 June 2014). doi:10.1117/12.2050433

  • Chavez PS Jr (1988) An improved dark object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens Environ 24:459–479

    Article  Google Scholar 

  • Chavez PS Jr (1996) Image-based atmospheric corrections revisited and improved. Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Crippen RE (1987) The regression intersection method of adjusting image data for band ratioing. Int J Remote Sens 9:767–776

    Article  Google Scholar 

  • Farrand WH, Singer RB, Merényi E (1994) Retrieval of apparent surface reflectance from AVIRIS data—a comparison of empirical line, radiative-transfer and spectral mixture methods. Remote Sens Environ 47(3):311–321

    Article  Google Scholar 

  • Gao BC, Heidebrecht KB, Goetz AFH (1993) Derivation of scaled surface reflectances from AVIRIS data. Remote Sens Environ 44:165–178

    Article  Google Scholar 

  • Gao BC, Montes MJ, Davis OC, Goetz AFH (2009) Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens Environ 113:S17–S24

    Article  Google Scholar 

  • Gordon HR (1978) Removal of atmospheric effects from the satellite imagery of the oceans. Appl Opt 17:1631–1636

    Google Scholar 

  • Hadjimitsis DG (2009) Aerosol optical thickness (AOT) retrieval over land using satellite image-based algorithm. Air Qual Atmos Health 2:89–97

    Article  Google Scholar 

  • Kruse FA (1988) Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sens Environ 24:31–51

    Article  Google Scholar 

  • Rahman H, Dedieu G (1994) SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int J Remote Sens 15:123–143

    Article  Google Scholar 

  • Richter R, Schläpfer D (2016) Atmospheric/topographic correction for airborne imagery. ATCOR-4 User Guide, Version 7.1.0, Nov 2016

    Google Scholar 

  • Roberts DA, Yamaguchi Y, Lyon R (1986) Comparison of various techniques for calibration of AIS data. In: Vane G, Goetz AFH (eds) Proceedings of the 2nd airborne imaging spectrometer data analysis workshop, JPL Publication, vol 86–35, pp 21−30, Jet Propulsion Lab, Pasadena, CA

    Google Scholar 

  • Schott JR, Salvaggio C, Volchok WJ (1988) Radiometric scene normalization using pseudoinvariant features. Remote Sens Environ 26(1):1–14

    Article  Google Scholar 

  • Schroeder TA, Cohen WB, Song C, Canty MJ, Yang Z (2006) Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sens Environ 103:16–26

    Article  Google Scholar 

  • Smith GM, Milton EJ (1999) The use of the empirical line method to calibrate remotely sensed data to reflectance. Int J Rem Sens 20(13):2653–2662

    Article  Google Scholar 

  • Tanre D et al (1990) Description of a computer code to simulate the satellite signal in the solar spectrum: the 5S code. Int J Rem Sensing 11:659–668

    Article  Google Scholar 

  • Vermote EF, Tanre D, Denze JL, Herman M, Morcette JJ (1997) Second simulation of the satellite signal in the solar spectrum 6S: an overview. IEEE Trans Geosci Remote Sens 35(3):675–686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R.P. (2018). Atmospheric Corrections. In: Remote Sensing Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55876-8_10

Download citation

Publish with us

Policies and ethics