Skip to main content

Molekularbiologische Verfahren

  • Chapter
  • First Online:
Lebensmittelanalytik

Part of the book series: Springer-Lehrbuch ((SLB))

  • 14k Accesses

Zusammenfassung

Seit den 1970er Jahren wurden eine Vielzahl molekularbiologischer Methoden (engl. molecular biological methods) entwickelt, die Verwendung finden in verschiedenen Fachrichtungen, wie z. B. der Medizin, der Forensik, der Biotechnologie aber auch der Lebensmittelanalytik. Grundsätzlich können molekularbiologische Methoden auf alle Lebensmittelbestandteile angewendet werden, die Nucleinsäuren enthalten. Die Vorteile molekularbiologischer Methoden liegen in geringen Nachweisgrenzen und in hohen Spezifitäten. Typischerweise beschränkt sich die Lebensmittelanalytik auf das Arbeiten mit DNA, sie stellt für einige relevante Fragestellungen einen besonders geeigneten Analyten dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Weiterführende Literatur

  1. Germini A et al. (2004) Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem 52:3275–3280

    Article  CAS  PubMed  Google Scholar 

  2. Klein G (2003) Anwendung molekularbiologischer Methoden in der Lebensmittelmikrobiologie am Beispiel probiotisch genutzter Laktobazillen. Berl Munch Tierarztl Wochenschr 116(11–12):510–516

    PubMed  CAS  Google Scholar 

  3. Näther G, Toutounian K, Ellerbroek L (2007) Genotypisierung von Campylobacter spp, mittels AFLP in wiederkehrend Campylobacter-positiven Masthähnchenherden. Archiv für Lebensmittelhygiene 589(10):175–179

    Google Scholar 

  4. Waiblinger HU et al. (2005) Die Untersuchung von transgenem Rapspollen in Honigen mittels Real-time-PCR. Deut Lebensm Rundsch 101(12):543–549

    CAS  Google Scholar 

  5. Brackenridge JC, Bachelard HS (1969) Extraction and some properties of membrane-bound proteins from ox cerebral cortex microsomes. Int J Protein Res 1(3):157–168

    PubMed  CAS  Google Scholar 

  6. Dias R et al (2002) DNA-lipid systems. A physical chemistry study. Braz J Med Biol Res 35:509–522

    Article  CAS  PubMed  Google Scholar 

  7. Mao Y et al (1994) DNA binding to crystalline silica characterized by Fourier-transform infrared spectroscopy. Environ Health Perspect 102(Suppl 10):165–171

    Google Scholar 

  8. ASU L15.05-1

    Google Scholar 

  9. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg Berlin

    Google Scholar 

  10. Müller HJ (2001) PCR – Polymerase-Kettenreaktion, Spektrum Akademischer Verlag, Heidelberg Berlin

    Google Scholar 

  11. Fischer M, Haase I (2006) PCR in der Lebensmittelanalytik – Bedeutung und Anwendungsbeispiele. GIT Labor-Fachzeitschrift 03:206–209, GIT Verlag, Darmstadt

    Google Scholar 

  12. Roux KH (1995) Optimization and troubleshooting in PCR. PCR Methods Appl 4:185–194

    Article  Google Scholar 

  13. Allmann M, Candrian U, Hofelein C, Liithy J (1993) Polymerase chain reaction (PCR): A possible alternative to immunochemical methods assuring safety and quality of food. Z Lebensm Unters Forsch 196:248–251

    Article  CAS  PubMed  Google Scholar 

  14. Garciacanas V, Cifuentes A, Gonzalez R (2004) Detection of genetically modified organisms in food by DNA amplification techniques. Crit Rev Food Sci Nutr 44:425–436

    Article  CAS  Google Scholar 

  15. Malorny B, Tassios PT, Rådström P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39–48

    Article  CAS  PubMed  Google Scholar 

  16. ENGL European Network of GMO Laboratories (2008) Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Technical Report by the Joint Research Centre, European Commission

    Google Scholar 

  17. Pfaffl MW (2004) Quantification strategies in real-time PCR. In: S. A. Bustin (Hrsg) A-Z of quantitative PCR Kapitel 3. International University Line (IUL), La Jolla, CA, USA, S 87–112

    Google Scholar 

  18. Pfaffl MW (2001) A new mathematic model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maurer J (Hrsg) (2006) PCR methods in foods. Springer Verlag, New York

    Google Scholar 

  20. Bustin SA et al (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  21. Mayer F et al (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60(6):1350–1357

    Article  CAS  PubMed  Google Scholar 

  22. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – A review. Nucleos Nucleot Nucl 27:224–243

    Article  CAS  Google Scholar 

  23. Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3:227–239

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Macdonald J (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211

    Article  CAS  PubMed  Google Scholar 

  25. Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A (2014) Advances of DNA-based methods for tracing the botanical origin of food products Food Res Int 60:163–172

    Article  CAS  Google Scholar 

  26. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Google Scholar 

  27. Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probe 16:223–229

    Article  CAS  Google Scholar 

  28. Vaagt F, Haase I, Fischer M (2013) Loop-Mediated Isothermal Amplification (LAMP)-based method for rapid mushroom species identification. J Agri Food Chem 61:1833–1840

    Article  CAS  Google Scholar 

  29. Focke F, Haase I, Fischer M (2013) Loop-Mediated Isothermal Amplification (LAMP): Methods for plant species identification. Food J Agri Food Chem 61:2943–2949

    Article  CAS  Google Scholar 

  30. Metzker ML (2010) Applications of next-generation sequencing sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  31. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Li YH, Li SL, Hu N, He YM, Pong R, Lin DN, Lu LH, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol

    Google Scholar 

  33. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  34. Ku CS, Roukos DH (2013) From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine. Expert Rev Med Devic 10:1–6

    Article  CAS  Google Scholar 

  35. Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JM, Cronk Q (2012) Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot 99:320–329

    Article  CAS  PubMed  Google Scholar 

  36. Fischer C, Kallinich C, Klockmann S, Schrader J, Fischer M (2016) Automatized enrichment of sulfanilamide in milk matrices by utilization of aptamer linked magnetic particles. J Agric Food Chem 64:9246

    Article  CAS  PubMed  Google Scholar 

  37. Hünniger T, Felbinger C, Wessels H, Mast S, Hoffmann A, Schefer A, Märtelbauer E, Paschke-Kratzin A, Fischer M (2015) Food targeting: A real-time PCR assay targeting 16S rDNA for direct quantification of Alicyclobacillus spp. spores after aptamer-based enrichment. J Agric Food Chem 63:4291

    Article  CAS  PubMed  Google Scholar 

  38. Vaagt F, Haase I, Fischer M (2013) Loop-mediated isothermal Amplification (LAMP) based method for rapid mushroom species identification. J Agric Food Chem 61:1833

    Article  CAS  PubMed  Google Scholar 

  39. Wu J, Kodzius R, Cao W, Wen W, Extraction, amplification and detection of DNA in microfluidic chip-based assays (2013). Mircochimica Acta 181:1611

    Article  CAS  Google Scholar 

  40. Sajid M, Kawde A, Muhammad D (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689

    Article  Google Scholar 

  41. Mark S, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matissek, R., Fischer, M., Steiner, G. (2018). Molekularbiologische Verfahren. In: Lebensmittelanalytik. Springer-Lehrbuch. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55722-8_13

Download citation

Publish with us

Policies and ethics