Skip to main content

Non-Finitely Generated Kernels

  • Chapter
  • First Online:
Algebraic Theory of Locally Nilpotent Derivations

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 136.3))

  • 883 Accesses

Abstract

The Maurer-Weitzenbr̈ock Theorem for linear \(\mathbb{G}_{a}\)-actions on affine space does not generalize to non-linear \(\mathbb{G}_{a}\)-actions. In 1990, Paul Roberts [359] gave the first examples of non-affine invariant rings for \(\mathbb{G}_{a}\)-actions on an affine space. These examples involved actions of \(\mathbb{G}_{a}\) on \(\mathbb{A}^{7}\) over a field k of characteristic zero, and are counterexamples to Hilbert’s Fourteenth Problem. Subsequent examples of \(\mathbb{G}_{a}\)-actions of non-finite type were constructed in Freudenburg [163] and in Daigle and Freudenburg [79] for \(\mathbb{A}^{6}\) and \(\mathbb{A}^{5}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. A’Campo-Neuen, Note on a counterexample to Hilbert’s fourteenth problem given by P. Roberts, Indag. Math., N.S. 5 (1994), 253–257.

    Google Scholar 

  2. S. Bhatwadekar and D. Daigle, On finite generation of kernels of locally nilpotentR-derivations ofR[X, Y, Z], J. Algebra 322 (2009), 2915–2926.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Cerezo, Sur les invariants algebriqués du groupe engendré par une matrice nilpotente, 1986, avail. at math.unice.fr/ ∼ frou.

    Google Scholar 

  4. P. C. Craighero, A counterexample to Hilbert’s Fourteenth Problem in dimension five, J. Algebra 221 (1999), 528–535.

    Article  MathSciNet  Google Scholar 

  5. P. C. Craighero, A note on triangular derivations ofk[X 1, X 2, X 3, X 4], Proc. Amer. Math. Soc. 129 (2001), 657–662.

    Article  MathSciNet  Google Scholar 

  6. P. C. Craighero, Triangular derivations ofk[X 1, X 2, X 3, X 4], J. Algebra 241 (2001), 328–339.

    Article  MathSciNet  Google Scholar 

  7. H. Derksen, The kernel of a derivation, J. Pure Appl. Algebra 84 (1993), 13–16.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. I. Danilov and M. H. Gizatullin, \(\mathbb{G}_{a}\) -actions on \(\mathbb{C}^{3}\) and \(\mathbb{C}^{7}\), Comm. Algebra 22 (1994), 6295–6302.

    Google Scholar 

  9. V. I. Danilov and M. H. Gizatullin, \(\mathbb{G}_{a}\) -invariants and slices, Comm. Algebra 30 (2002), 1437–1447.

    Google Scholar 

  10. E. B. Elliott, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser, Boston, 2000.

    Google Scholar 

  11. E. B. Elliott, A simple solution of Hilbert’s fourteenth problem, Colloq. Math. 105 (2006), 167–170.

    Article  MathSciNet  Google Scholar 

  12. A. van den Essen and T. Janssen, Kernels of elementary derivations, Tech. Report 9548, Dept. of Mathematics, Univ. Nijmegen, The Netherlands, 1995.

    Google Scholar 

  13. K.-H. Fieseler, A counterexample to Hilbert’s Fourteenth Problem in dimension six, Transform. Groups 5 (2000), 61–71.

    Article  MathSciNet  Google Scholar 

  14. K.-H. Fieseler, A linear counterexample to the Fourteenth Problem of Hilbert in dimension eleven, Proc. Amer. Math. Soc. 135 (2007), 51–57.

    MathSciNet  Google Scholar 

  15. K.-H. Fieseler, Foundations of invariant theory for the down operator, J. Symbolic Comp. 57 (2013), 19–47.

    Article  MathSciNet  Google Scholar 

  16. G. Freudenburg and S. Kuroda, Cable algebras and rings of \(\mathbb{G}_{a}\) -invariants, Kyoto J. Math. 57 (2017), 325–363.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Jorgenson, A note on a class of rings found as \(\mathbb{G}_{a}\) -invariants for locally trivial actions on normal affine varieties, Rocky Mountain J. Math. 34 (2004), 1343–1352.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Khoury, On some properties of elementary derivations in dimension six, J. Pure Appl. Algebra 156 (2001), 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Kojima and M. Miyanishi, On P. Roberts’ counterexample to the fourteenth problem of Hilbert, J. Pure Appl. Algebra 122 (1997), 247–268.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Kurano, Positive characteristic finite generatiion of symbolic Rees algebra and Roberts’ counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), 473–496.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Kuroda, A counterexample to the Fourteenth Problem of Hilbert in dimension four, J. Algebra 279 (2004), 126–134.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. G. Koshevoi, A generalization of Roberts’ counterexample to the Fourteenth Problem of Hilbert, Tohoku Math. J. 56 (2004), 501–522.

    Article  MathSciNet  Google Scholar 

  23. E. G. Koshevoi, A counterexample to the Fourteenth Problem of Hilbert in dimension three, Michigan Math. J. 53 (2005), 123–132.

    Article  MathSciNet  Google Scholar 

  24. E. G. Koshevoi, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395–406.

    Article  MathSciNet  Google Scholar 

  25. E. G. Koshevoi, Hilbert’s fourteenth problem and algebraic extensions, J. Algebra 309 (2007), 282–291.

    Article  MathSciNet  Google Scholar 

  26. E. G. Koshevoi, Hilbert’s fourteenth problem and algebraic extensions with an appendix on Roberts type examples, Acta Math. Vietnam 32 (2007), 2847–257.

    Google Scholar 

  27. S. Maubach, Hilbert 14 and related subjects, Master’s thesis, Catholic Univ. Nijmegen, 1998.

    Google Scholar 

  28. E. G. Koshevoi, Triangular monomial derivations onk[x 1, x 2, x 3, x 4] have kernel generated by at most four elements, J. Pure Appl. Algebra 153 (2000), 165–170.

    Article  MathSciNet  Google Scholar 

  29. E. G. Koshevoi, Polynomial endomorphisms and kernels of derivations, Ph.D. thesis, Univ. Nijmegen, The Netherlands, 2003.

    Google Scholar 

  30. M. Nagata, On the 14-th Problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not noetherian, Proc. Amer. Math. Soc. 94 (1985), 589–592.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. R. Richman, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990), 461–473.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. P. Russell and, An application of generalized Newton Puiseux expansions to a conjecture of D. Daigle and G. Freudenburg, Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer Verlag, 2004, pp. 687–701.

    Google Scholar 

  34. R. Steinberg, Nagata’s example, Algebraic Groups and Lie Groups, Cambridge University Press, 1997, pp. 375–384.

    MATH  Google Scholar 

  35. R. G. Swan, On Freudenburg’s counterexample to the fourteenth problem of Hilbert, Transform. Groups 11 (2006), 269–294.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. G. Swan, A note on Hilbert’s Fourteenth Problem for monomial derivations, Affine algebraic geometry, Osaka University Press, Osaka, 2007, pp. 437–448.

    MATH  Google Scholar 

  37. W. V. Vasconcelos, Invariant rings and quasiaffine quotients, Math. Z. 244 (2003), 163–174.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Nagata’s Problem Two

Appendix: Nagata’s Problem Two

Nagata posed the following question in his 1959 paper [320] as “Problem 2”.

Let K be a subfield of the field k(x 1, , x n ) such that tr. deg. k K = 3. Is Kk[x 1, , x n ] always finitely generated?

The example in Nagata’s paper has tr. deg. k K = 4, as does the example of Steinberg (Thm. 1.2 of [392]). Also, the kernels of the derivations D (r, s) in Sect.  7.14 have tr. deg k ( ker D (r, s)) = 4. On the other hand, Rees’s counterexample to Zariski’s Problem has fixed ring of transcendence degree three; see Sect.  6.4 .

Nagata’s question was answered in the negative by Kuroda in [261, 263]. Kuroda’s first counterexamples are subfields of k (4). Let γ and δ ij be integers (1 ≤ i ≤ 3, 1 ≤ j ≤ 4) such that γ ≥ 1 and:

$$\displaystyle{\delta _{ij} \geq 1\,\,\text{if}\,\,1 \leq j \leq 3\quad \text{and}\quad \delta _{i,4} \geq 0\,\,\text{if}\,\,1 \leq i \leq 3}$$

Let k(Π) denote the subfield of k(x) = k(x 1, x 2, x 3, x 4) = k (4) generated by:

$$\displaystyle\begin{array}{rcl} \varPi _{1}& =& x_{4}^{\gamma } - x_{ 1}^{-\delta _{1,1} }x_{2}^{\delta _{1,2} }x_{3}^{\delta _{1,3} }x_{4}^{\delta _{1,4} } {}\\ {}\\ \varPi _{2}& =& x_{4}^{\gamma } - x_{ 1}^{\delta _{2,1} }x_{2}^{-\delta _{2,2} }x_{3}^{\delta _{2,3} }x_{4}^{\delta _{2,4} } {}\\ {}\\ \varPi _{2}& =& x_{4}^{\gamma } - x_{ 1}^{\delta _{3,1} }x_{2}^{\delta _{3,2} }x_{3}^{-\delta _{3,3} }x_{4}^{\delta _{3,4} } {}\\ \end{array}$$

Let k[x] = k[x 1, x 2, x 3, x 4].

Theorem 7.30 (Kuroda [261], Thm 1.1)

If

$$\displaystyle{ \frac{\delta _{1,1}} {\delta _{1,1} +\min \{\delta _{2,1},\delta _{3,1}\}} + \frac{\delta _{2,2}} {\delta _{2,2} +\min \{\delta _{3,2},\delta _{1,2}\}} + \frac{\delta _{3,3}} {\delta _{3,3} +\min \{\delta _{1,3},\delta _{2,3}\}} <1}$$

then k(Π) ∩ k[x] is not finitely generated over k.

Kuroda also shows that k(Π) ∩ k[x] cannot be the kernel of any locally nilpotent derivation of k[x].

Nonetheless, there does exist D ∈ Der k (k[x]) with ker D = k(Π) ∩ k[x]. For the simplest symmetric example, take k(Π) = k( f, g, h) for:

$$\displaystyle{\,f = x_{4} - x_{1}^{-1}x_{ 2}^{3}x_{ 3}^{3}\,\,,\,\,g = x_{ 4} - x_{1}^{3}x_{ 2}^{-1}x_{ 3}^{3}\,\,,\,\,h = x_{ 4} - x_{1}^{3}x_{ 2}^{3}x_{ 3}^{-1}}$$

The jacobian derivation Δ ( f, g, h) ∈ Der k (k(x)) restricts to k[x], namely, Δ ( f, g, h) = 4x 1 x 2 x 3 D, where:

$$\displaystyle\begin{array}{rcl} Dx_{i}& =& x_{i}(5x_{i}^{4}-\varphi )\qquad \text{for}\,\,\varphi = x_{ 1}^{4} + x_{ 2}^{4} + x_{ 3}^{4}\quad (1 \leq i \leq 3) {}\\ Dx_{4}& =& -20(x_{1}x_{2}x_{3})^{3} {}\\ \end{array}$$

That ker D = k(Π) ∩ k[x] can be proved using [264].

Kuroda’s second family of examples have members which are subfields L of K = k(x 1, x 2, x 3) = k (3), i.e., K is an algebraic extension of L, but Lk[x 1, x 2, x 3] is not finitely generated. These appear in [263]. By the result proved in section “Appendix 1: Finite Group Actions” of Chap.  6 together with the Finiteness Theorem, it follows that Lk[x 1, x 2, x 3] cannot be the ring of invariants of any algebraic group action on \(\mathbb{A}^{3}\).

Given positive integers γ and δ ij (i, j = 1, 2), let k(H) denote the subfield of K generated by:

$$\displaystyle\begin{array}{rcl} H_{1}& =& x_{1}^{\delta _{2,1} }x_{2}^{-\delta _{2,2} } - x_{1}^{-\delta _{1,1} }x_{2}^{\delta _{1,2} } {}\\ {}\\ H_{2}& =& x_{3}^{\gamma } - x_{ 1}^{-\delta _{1,1} }x_{2}^{\delta _{1,2} } {}\\ {}\\ H_{3}& =& 2x_{1}^{\delta _{2,1}-\delta _{1,1} }x_{2}^{\delta _{1,2}-\delta _{2,2} } - x_{1}^{-2\delta _{1,1} }x_{2}^{2\delta _{1,2} } {}\\ \end{array}$$

Theorem 7.31 (Kuroda [263], Thm. 1.1)

If

$$\displaystyle{ \frac{\delta _{1,1}} {\delta _{1,1} +\delta _{2,1}} + \frac{\delta _{2,2}} {\delta _{2,2} +\delta _{1,2}} <\frac{1} {2}}$$

then K(H) ∩ k[x 1, x 2, x 3] is not finitely generated over k.

Kuroda uses the theory of locally nilpotent derivations in his proofs. See also [265, 266]. These examples bear study in the effort to decide whether kernels of locally nilpotent derivations of k [4] are finitely generated.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Freudenburg, G. (2017). Non-Finitely Generated Kernels. In: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol 136.3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55350-3_7

Download citation

Publish with us

Policies and ethics