Skip to main content

Linear Actions of Unipotent Groups

  • Chapter
  • First Online:
Algebraic Theory of Locally Nilpotent Derivations

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 136.3))

Abstract

Invariant theory originally concerned itself with groups of vector space transformations, so the linear algebraic \(\mathbb{G}_{a}\)-actions were the first \(\mathbb{G}_{a}\)-actions to be studied. The action of \(SL_{2}(\mathbb{C})\) on the vector space V n of binary forms of degree n has an especially rich history, dating back to the mid-Nineteenth Century. The ring of SL 2-invariants, together with the ring of \(\mathbb{G}_{a}\)-invariants for the subgroup \(\mathbb{G}_{a} \subset SL_{2}(\mathbb{C})\), were the focus of much research at the time. A fundamental result due to Gordan (1868) is that both \(k[V _{n}]^{SL_{2}(\mathbb{C})}\) and \(k[V _{n}]^{\mathbb{G}_{a}}\) are finitely generated [182]. Gordan calculated generators for these rings up to n = 6. These historical developments are discussed in Sect.  6.3.1 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mathematical Problems.

  2. 2.

    In the preprint [271] posted in September, 2015, Lercier and Olive assert that the systems of invariants produced by Brouwer and Popviciu for A 9 and A 10 are complete, thus giving μ(9) = 476 and δ(9) = 22, and μ(10) = 510 and δ(10) = 21 if their results are confirmed.

References

  1. A. A’Campo-Neuen, Note on a counterexample to Hilbert’s fourteenth problem given by P. Roberts, Indag. Math., N.S. 5 (1994), 253–257.

    Google Scholar 

  2. I. V. Arzhantsev, Affine embeddings of homogeneous spaces, London Math. Soc. Lecture Note Ser. 338 (2007), 1–51.

    MathSciNet  MATH  Google Scholar 

  3. V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), 3–8.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (2003), 58–80.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. V. Arzhantsev, Algebraic group actions on affine spaces, Contemp. Math. 43 (1985), 1–23.

    Article  MathSciNet  Google Scholar 

  6. L.P. Bedratyuk, A complete minimal system of covariants for the binary form of degree 8, Mat. Visn. Nauk. Tov. Im. Shevchenka 5 (2008), 11–22 (Ukrainian); arXiv 0612113v1 (English).

    Google Scholar 

  7. L.P. Bedratyuk, A complete minimal system of covariants for the binary form of degree 7, J. Symbolic Comput. 44 (2009), 211–220.

    Article  MathSciNet  MATH  Google Scholar 

  8. L.P. Bedratyuk, A note about the Nowicki conjecture on Weitzenböck derivations, Serdica Math. J. 35 (2009), 311–316.

    MathSciNet  MATH  Google Scholar 

  9. L.P. Bedratyuk, Kernels of derivations of polynomial rings and Casimir elements, Ukrainian Math. J. 62 (2010), 495–517.

    Article  MathSciNet  MATH  Google Scholar 

  10. L.P. Bedratyuk, Essays in the History of Lie Groups and Algebraic Groups, History of Mathematics, vol. 21, Amer. Math. Soc. and London Math. Soc., 2001, Providence, London.

    Google Scholar 

  11. A. Brouwer, tables found at www.win.tue.nl/~aeb/math/invar.html.

  12. A. Brouwer and M. Popoviciu, The invariants of the binary decimic, J. Symbolic Comput. 45 (2010), 837–843.

    Article  MathSciNet  MATH  Google Scholar 

  13. L.P. Bedratyuk, The invariants of the binary nonic, J. Symbolic Comput. 45 (2010), 709–720.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bryant and G. Kemper, Global degree bounds and the transfer principle for invariants, J. Algebra 284 (2005), 80–90.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Castravet and J. Tevelev, Hilbert’s 14-th Problem and Cox rings, Compos. Math. 142 (2006), 1479–1498.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Cerezo, Sur les invariants algebriqués du groupe engendré par une matrice nilpotente, 1986, avail. at math.unice.fr/ ∼ frou.

    Google Scholar 

  17. L.P. Bedratyuk, Table des invariants algébriques et rationnels d’une matrice nilpotente de petite dimension, Tech. Report 146, Université de Nice Prepub. Math., France, 1987.

    Google Scholar 

  18. L.P. Bedratyuk, Calcul des invariants algébriques et rationnels d’une matrice nilpotente, Tech. Report 35, Université de Poitiers Prepub. Math., France, 1988.

    Google Scholar 

  19. G. V. Choodnovsky, Sur la construction de Rees et Nagata pour le 14e problème de Hilbert, C.R. Acad. Sci. Paris Sér. A-B 286 (1978), A1133–A1135.

    Google Scholar 

  20. L. Corry, Theory of invariants, Storia della scienza (Sandro Petruccioli, ed.), vol. 7, Istituto della Encyclopedia Italiana, Roma, 2003, avail. in English at www.tau.ac.il/ corry/publications/articles/invariants.html, pp. 1025–1029.

    Google Scholar 

  21. H. Cröni, Zur Berechnung von Kovarianten von Quantiken, Ph.D. thesis, Univ. des Saarlandes, Saarbrücken, Germany, 2002.

    Google Scholar 

  22. P. C. Craighero, A counterexample to Hilbert’s Fourteenth Problem in dimension five, J. Algebra 221 (1999), 528–535.

    Article  MathSciNet  Google Scholar 

  23. H. Derksen and G. Kemper, Computational Invariant Theory, Springer Verlag, Berlin, Heidelberg, New York, 2002.

    Book  MATH  Google Scholar 

  24. J. Dieudonné and J. Carrell, Invariant theory, old and new, Adv. Math. 4 (1970), 1–80.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Dixmier, Lectures on Binary Forms, West Chester University of Pennsylvania (Notes by F. Grosshans), 1986.

    Google Scholar 

  26. J. Dixmier and D. Lazard, Le nombre minimu d’invariants fondamentaux pour les formes binaires de degré 7, Port. Math. 43 (1986), 377–392.

    MATH  Google Scholar 

  27. I. Dolgachev, Lectures on Invariant Theory, London Math. Soc. Lect. Notes Series, vol. 296, Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar 

  28. V. Drensky and L. Makar-Limanov, The conjecture of Nowicki on Weitzenböck derivations of polynomial algebras, J. Algebra Appl. 8 (2009), 41–51.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. B. Elliott, On perpetuants and contra-perpetuants, Proc. London Math. Soc. 4 (1907), 228–246.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. B. Elliott, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser, Boston, 2000.

    Google Scholar 

  31. A. Fauntleroy, Linear \(\mathbb{G}_{a}\) -actions on affine spaces and associated rings of invariants, J. Pure Appl. Algebra 9 (1977), 195–206.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. B. Elliott, On Weitzenböck’s theorem in positive characteristic, Proc. Amer. Math. Soc. 64 (1977), 209–213.

    MathSciNet  MATH  Google Scholar 

  33. E. B. Elliott, Algebraic and algebro-geometric interpretations of Weitzenbock’s problem, J. Algebra 62 (1980), 21–38.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Fogarty, Invariant Theory, Benjamin, New York, 1969.

    MATH  Google Scholar 

  35. F. Franklin and J. Sylvester, Tables of generating functions and groundforms for the binary quantics of the first ten orders, Amer. J. Math. 2 (1879), 223–251.

    Article  MathSciNet  MATH  Google Scholar 

  36. K.-H. Fieseler, A counterexample to Hilbert’s Fourteenth Problem in dimension six, Transform. Groups 5 (2000), 61–71.

    Article  MathSciNet  Google Scholar 

  37. K.-H. Fieseler, A linear counterexample to the Fourteenth Problem of Hilbert in dimension eleven, Proc. Amer. Math. Soc. 135 (2007), 51–57.

    MathSciNet  Google Scholar 

  38. K.-H. Fieseler, Foundations of invariant theory for the down operator, J. Symbolic Comp. 57 (2013), 19–47.

    Article  MathSciNet  Google Scholar 

  39. P. Gordan, Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Funktion mit numerischen Coeffizienten einer endlichen Anzahl solcher Formen ist, J. Reine Angew. Math. 69 (1868), 323–354.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. H. Grace and A. Young, The Algebra of Invariants, Cambridge University Press, 2010, reprinted 1903 edition.

    Google Scholar 

  41. F. Grosshans, The invariants of unipotent radicals of parabolic subgroups, Invent. Math. 73 (1983), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  42. G.-M. Greuel and, Algebraic Homogeneous Spaces and Invariant Theory, Lect. Notes in Math., vol. 1673, Springer Verlag, 1997.

    Google Scholar 

  43. D. Hadziev, Some problems in the theory of vector invariants, Soviet Math. Dokl. 7 (1966), 1608–1610.

    Google Scholar 

  44. T. Hagedorn and G. Wilson, Symbolic computation of degree-three covariants for a binary form, Involve 2 (2009), 511–532.

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Hilbert, Mathematische Probleme, Archiv der Math. und Physik 1 (1901), 44–63, 213–237.

    MATH  Google Scholar 

  46. G.-M. Greuel and, Mathematical Problems, Bull. Amer. Math. Soc. 8 (1902), 437–479.

    Google Scholar 

  47. G.-M. Greuel and, Theory of Algebraic Invariants, Cambridge University Press, 1993.

    Google Scholar 

  48. J. E. Humpreys, Hilbert’s Fourteenth Problem, Amer. Math. Monthly 70 (1978), 341–353.

    Article  MathSciNet  Google Scholar 

  49. M. C. Kang, A Groebner basis approach to solve a conjecture of Nowicki, J. Symbolic Comput. 43 (2008), 908–922.

    Article  MathSciNet  Google Scholar 

  50. H. Kraft and J. Weyman, Degree bounds for invariants and covariants of binary forms, 1999, avail. at www.math.unibas-ch.

  51. J. Kung and G.-C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. 10 (1984), 27–85.

    Article  MathSciNet  MATH  Google Scholar 

  52. E. G. Koshevoi, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2) 62 (2010), 75–115.

    Google Scholar 

  53. J. Kuttler and N. Wallach, Representations ofSL 2 and the distribution of points in \(\mathbb{P}^{n}\), Prog. Math., vol. 220, pp. 355–373, Birkhäuser (Boston, Basel, Berlin), 2004, In: Noncommutative Harmonic Analysis.

    Google Scholar 

  54. R. Lercier and M. Olive, Covariant algebra of the binary monic and the binary decimal, arXiv:1509.08749v1.

    Google Scholar 

  55. L. Maurer, Über die Endlichkeit der Invariantensysteme, Sitzungsber. Math.-Phys. Kl. Kgl. Bayer. Akad. Wiss. München 29 (1899), 147–175.

    MATH  Google Scholar 

  56. S. Mukai, Counterexample to Hilbert’s fourteenth problem for the 3-dimensional additive group, RIMS Preprint 1343, Kyoto, 2001.

    Google Scholar 

  57. J. H. McKay and, Finite and infinite generation of Nagata invariant ring, Talk abstract, Oberwolfach, 2004. Avail. at www.kurims.kyoto-u.ac.jp/~mukai/paper/Oberwolfach04.pdf.

  58. J. H. McKay and, Finite generation of the Nagata invariant rings in A-D-E cases, preprint 2005.

    Google Scholar 

  59. J. H. McKay and, Geometric realization of T-shaped root systems and counterexamples to Hilbert’s fourteenth problem, Algebraic Transformation Groups and Algebraic Varieties, 123–129, Springer-Verlag, Berlin, 2004, Encyclopaedia Math. Sci. 132.

    Google Scholar 

  60. S. Mukai and H. Naito, On some invariant rings for the two dimensional additive group action, avail. at http://www.eprints.math.sci.hokudai.ac.jp.

  61. J. H. McKay and, Hilbert’s fourteenth problem–the finite generation of subrings such as rings of invariants, Proc. Symp. Pure Math. 28 (Providence), Amer. Math. Soc., 1976, pp. 431–444.

    Google Scholar 

  62. D. Mumford and J. Fogarty, Geometric Invariant Theory (Third enlarged edition), Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, Springer-Verlag, 1994.

    Google Scholar 

  63. M. Nagata, On the 14-th Problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. H. McKay and, On the Fourteenth Problem of Hilbert, Proc. I.C.M. 1958, Cambridge University Press, 1960, pp. 459–462.

    Google Scholar 

  65. J. H. McKay and, Lectures on the Fourteenth Problem of Hilbert, Lecture Notes, vol. 31, Tata Inst., Bombay, 1965.

    Google Scholar 

  66. J. H. McKay and, Polynomial rings and affine spaces, CBMS Regional Conference Series in Mathematics, vol. 37, American Mathematical Society, 1978.

    Google Scholar 

  67. P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute, Bombay, 1978.

    MATH  Google Scholar 

  68. E. Noether, Der Endlichkeitssatz der Invarianten enlicher Gruppen, Math. Ann. 77 (1916), 89–92.

    Article  MATH  Google Scholar 

  69. P. E. Newstead, Der Endlichkeitssatz der Invarianten enlicher linearer Gruppen der Charakteristik p, Nachr. Ges. Wiss. Göttingen (1926), 28–35.

    Google Scholar 

  70. A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Toruń, 1994.

    Google Scholar 

  71. M. Olive, About Gordan’s algorithm for binary forms, arXiv:1403.2283v5.

    Google Scholar 

  72. P. Olver, Classical Invariant Theory, London Mathematical Society Student Texts, vol. 44, Cambridge Univ. Press, 1999.

    Book  Google Scholar 

  73. N. Onoda, Linear \(\mathbb{G}_{a}\) -actions on polynomial rings, Proceedings of the 25th Symposium on Ring Theory (Okayama, Japan) (Y. Tsushima and Y. Watanabe, eds.), 1992, pp. 11–16.

    Google Scholar 

  74. K. Parshall, Towards a history of Nineteenth-Century invariant theory, The History of Mathematics (New York), vol. 1, Academic Press, 1989, pp. 157–206.

    Google Scholar 

  75. K. Pommerening, Invariants of unipotent groups: A survey, Invariant Theory (New York), Lectures Notes in Math., vol. 1278, Springer-Verlag, 1987, pp. 8–17.

    Google Scholar 

  76. V. L. Popov, Hilbert’s theorem on invariants, Soviet Math. Dokl. 20 (1979), 1318–1322.

    MATH  Google Scholar 

  77. V. L. Popov, Contraction of the actions of reductive algebraic groups, Math. USSR-Sb. 58 (1987), 311–335.

    Article  MATH  Google Scholar 

  78. V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Math. Monographs, vol. 100, Amer. Math. Soc., Providence, 1992.

    Google Scholar 

  79. C. Procesi, Lie Groups: An Approach through Invariants and Representations, Springer Verlag, New York, 2007.

    MATH  Google Scholar 

  80. D. Rees, On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149.

    MathSciNet  MATH  Google Scholar 

  81. D. R. Richman, The fundamental theorems of vector invariants, Adv. Math. 73 (1989), 43–78.

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Roberts, On the covariants of a binary quantic of thenth degree, Quart. J. Pure Appl. Math. 4 (1861), 168–178.

    Google Scholar 

  83. J. Roé, On the existence of plane curves with imposed multiple points, J. Pure Appl. Algebra 156 (2001), 115–126.

    Article  MathSciNet  MATH  Google Scholar 

  84. J. Schröer, Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv. 79 (2004), 396–426.

    Article  MathSciNet  MATH  Google Scholar 

  85. C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1962), 403–409.

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89 (1967), 1022–1046.

    Article  MathSciNet  MATH  Google Scholar 

  87. R. Steinberg, Nagata’s example, Algebraic Groups and Lie Groups, Cambridge University Press, 1997, pp. 375–384.

    MATH  Google Scholar 

  88. E. Stroh, Über eine fundamentale Eigenschaft des Ueberschiebungs-processes und deren Verwerthung in der Theorie der binären Formen, Math. Ann. 33 (1888), 61–107.

    Article  MathSciNet  MATH  Google Scholar 

  89. L. Tan, An algorithm for explicit generators of the invariants of the basic \(\mathbb{G}_{a}\) -actions, Comm. Algebra 17 (1989), 565–572.

    Article  MathSciNet  MATH  Google Scholar 

  90. R. Tanimoto, Linear counterexamples to the fourteenth problem of Hilbert, J. Algebra 275 (2004), 331–338.

    Article  MathSciNet  MATH  Google Scholar 

  91. R. G. Swan, On the polynomiality of invariant rings for codimension one \(\mathbb{G}_{a}\) -modules, J. Algebra 305 (2006), 1084–1092.

    Article  MathSciNet  Google Scholar 

  92. A. Tyc, An elementary proof of the Weitzenböck theorem, Colloq. Math. 78 (1998), 123–132.

    MathSciNet  MATH  Google Scholar 

  93. F. von Gall, Das vollständige Formensystem der binären Form achter Ordnung, Math. Ann. 17 (1880), 31–51, 139–152, 456.

    Google Scholar 

  94. D. Wehlau, Weitzenböck derivations of nilpotency 3, Forum Math. 26 (2014), 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231–293.

    Article  MathSciNet  MATH  Google Scholar 

  96. H. Weyl, The Classical Groups, Princeton University Press, Princeton, NJ, 1946, second ed.

    Google Scholar 

  97. O. Zariski, Interpretations algebrico-geometriques du quatorzieme problem de Hilbert, Bull. Sci. Math. 78 (1954), 155–168.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Finite Group Actions

The following fact is well-known, and is provided here for the readers’ convenience. The statement of the proposition and the proof given here are due to Daigle (unpublished).

Proposition 6.19

Suppose k is a field, and B is a finitely generated commutative k-domain. Let G be a group of algebraic k-automorphisms of B (i.e., G acts faithfully on B). Then the following are equivalent.

  1. (1)

     G is finite

  2. (2)

     B is integral over B G

  3. (3)

     B is algebraic over B G

Proof

We first show that, for given bB, the following are equivalent.

  1. (4)

    The orbit \(\mathcal{O}_{b}\) is finite

  2. (5)

    b is integral over B G

  3. (6)

    b is algebraic over B G

(4) ⇒ (5): If \(\mathcal{O}_{b}\) is finite, define the monic polynomial f(x) ∈ k[x] by

$$\displaystyle{\,f(x) =\prod _{a\in \mathcal{O}_{b}}(x - a)\,\,.}$$

Then fB G[x] and f(b) = 0, and (5) follows.

(5) ⇒ (6): Obvious.

(6) ⇒ (4): If h(x) ∈ B G[x] and h(b) = 0 for nonzero h, choose \(a \in \mathcal{O}_{b}\), and suppose a = g ⋅ b for gG. Then

$$\displaystyle{h(a) = h(g \cdot b) = g \cdot h(b) = g \cdot 0 = 0\,\,,}$$

i.e., every \(a \in \mathcal{O}_{b}\) is a root of h. Since B is a domain, the number of roots of h is finite, and (4) follows.

Therefore (4),(5), and (6) are equivalent.

(1) ⇒ (2): Choose bB. Since G is finite, \(\mathcal{O}_{b}\) is finite, and therefore b is integral over B G. So B is integral over B G.

(2) ⇒ (3): Obvious.

(3) ⇒ (1): Since kB G, we have that B is finitely generated over B G. Write B = B G[x 1, , x n ], and define a function

$$\displaystyle\begin{array}{rcl} G& \rightarrow & \mathcal{O}_{x_{1}} \times \cdots \times \mathcal{O}_{x_{n}} {}\\ g& \mapsto & (g \cdot x_{1},\ldots,g \cdot x_{n})\,\,, {}\\ \end{array}$$

Now each element x i is algebraic over B G, meaning that each orbit \(\mathcal{O}_{x_{i}}\) is finite. Therefore, the set \(\mathcal{O}_{x_{1}} \times \cdots \times \mathcal{O}_{x_{n}}\) is also finite. In addition, the function above is injective, since the automorphism g of B is completely determined by its image on a set of generators. Therefore G is finite. □

Appendix 2: Generators for A 5 and A 6

This section reproduces the tables of generators for A 5 and A 6 given by Grace and Young in 1903 [185], and also gives the reader a method to decode these invariants, which are expressed symbolically in the form of classical transvectants. Table  6.3 gives generators for A 5 and Table  6.4 gives generators for A 6. A similar table for A 8 is given in [336], and for A 9 and A 10 in [271].

On the polynomial ring k[x 0, , x n ], D n is the basic linear derivation, defined by D n x i = x i−1 for i ≥ 1 and D n x 0 = 0. U n is the up operator, a linear locally nilpotent derivation defined by:

$$\displaystyle{U_{n}x_{i} = (i + 1)(n - i)x_{i+1}\,\,(0 \leq i \leq n - 1)\quad \mathrm{and}\quad U_{n}x_{n} = 0}$$

Given f, gA n = ker D n and i ≥ 1, the symbol ( f, g)i denotes:

$$\displaystyle{(\,f,g)^{i} = [U_{ n}^{i}\,f,U_{ n}^{i}g]_{ i}^{D_{n} }}$$

See Sect.  2.11.1 for the definition of the transvectant on the right side of this equation. The theory developed in Sect.  7.4 shows that ( f, g)iA n .

Recall that the degree of x i equals (1, i). If f is homogeneous of degree (r, s), then the order of f (relative to n) is nr − 2s. Elements in A n of order 0 are precisely the SL 2(k)-invariants. If g is homogeneous of degree (u, v), then ( f, g)i is homogeneous of degree (r + u, s + v + i).

Example 6.20

To illustrate, we calculate f 8 = ( f 2, f 4)2 in the table for A 5. First:

$$\displaystyle{\,f_{2} = (\,f_{0},f_{0})^{2} = [x_{ 2},x_{2}]_{2}^{D_{n} } = 2x_{0}x_{2} - x_{1}^{2}}$$

and

$$\displaystyle{\,f_{4} = (\,f_{0},f_{0})^{4} = [x_{ 4},x_{4}]_{4}^{D_{n} } = 2x_{0}x_{4} - 2x_{1}x_{3} + x_{2}^{2}}$$

(Note that these are equalities up to an integer multiple.) Next, we find that

$$\displaystyle{U_{5}^{2}\,f_{ 2} = 12x_{0}x_{4} + 3x_{1}x_{3} - 4x_{2}^{2}\quad \mathrm{and}\quad U_{ 5}^{2}\,f_{ 4} = 10x_{1}x_{5} - 16x_{2}x_{4} + 9x_{3}^{2}}$$

(again, up to integer multiples). Therefore:

$$\displaystyle\begin{array}{rcl} f_{8}& =& (\,f_{2},f_{4})^{2} = [U_{ 5}^{2}\,f_{ 2},U_{5}^{2}\,f_{ 4}]_{2}^{D_{5} } {}\\ & =& -150x_{0}^{2}x_{ 3}x_{5} + 48x_{0}^{2}x_{ 4}^{2} + 150x_{ 0}x_{1}x_{2}x_{5} + 54x_{0}x_{1}x_{3}x_{4} - 152x_{0}x_{2}^{2}x_{ 4} {}\\ & & +60x_{0}x_{2}x_{3}^{2} - 50x_{ 1}^{3}x_{ 5} + 50x_{1}^{2}x_{ 2}x_{4} - 57x_{1}^{2}x_{ 3}^{2} + 32x_{ 1}x_{2}^{2}x_{ 3} - 8x_{2}^{4} {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Freudenburg, G. (2017). Linear Actions of Unipotent Groups. In: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol 136.3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55350-3_6

Download citation

Publish with us

Policies and ethics