Skip to main content

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 136.3))

Abstract

This chapter investigates locally nilpotent derivations in the case B is a polynomial ring in a finite number of variables over a field k of characteristic zero. Equivalently, we are interested in the algebraic actions of \(\mathbb{G}_{a}\) on \(\mathbb{A}_{k}^{n}\).

Locally nilpotent derivations are useful if rather elusive objects. Though we do not have them at all on “majority” of rings, when we have them, they are rather hard to find and it is even harder to find all of them or to give any qualitative statements. We do not know much even for polynomial rings.

Leonid Makar-Limanov, Introduction to [ 282 ]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ernest Jean Philippe Fauque de Jonquières (1820–1901) was a career officer in the French navy, achieving the rank of vice-admiral in 1879. He learned advanced mathematics by reading works of Poncelet, Chasles, and other geometers. In 1859, he introduced the planar transformations \((x,y) \rightarrow \left (x, \frac{a(x)y+b(x)} {c(x)y+d(x)} \right )\), where adbc ≠ 0. These were later studied by Cremona.

  2. 2.

    Van den Essen gives a more exclusive definition of a nice derivation. See [142], 7.3.12.

  3. 3.

    Some authors use DF to denote the jacobian matrix of F, but we prefer to reserve D for derivations.

  4. 4.

    “The functions Φ(x), constructed for the arguments x + λξ, are independent of λ.”

  5. 5.

    “If such an entire function Φ is a product of two entire functions Φ = ϕ(x)ψ(x), then so also are the factors themselves functions Φ.”

References

  1. H. Bass, A non-triangular action of \(\mathbb{G}_{a}\) on \(\mathbb{A}^{3}\), J. Pure Appl. Algebra 33 (1984), 1–5.

    Article  MathSciNet  Google Scholar 

  2. J. Berson, A. van den Essen, and S. Maubach, Derivations having divergence zero onR[x, y], Israel J. Math. 124 (2001), 115–124.

    Google Scholar 

  3. M. de Bondt and A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture, J. Pure Appl. Algebra 193 (2004), 61–70.

    Article  MathSciNet  MATH  Google Scholar 

  4. L.P. Bedratyuk, A reduction of the Jacobian Conjecture to the symmetric case, Proc. Amer. Math. Soc. 133 (2005), 2201–2205.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Daigle, Locally Nilpotent Derivations, Lecture Notes for the 26th Autumn School of Algebraic Geometry, Łukȩcin, Poland, September 2003. Avail. at http://aix1.uottawa.ca/~ddaigle/.

  6. P. C. Craighero, A necessary and sufficient condition for triangulability of derivations ofk[x, y, z], J. Pure Appl. Algebra 113 (1996), 297–305.

    Google Scholar 

  7. P. C. Craighero, On some properties of locally nilpotent derivations, J. Pure Appl. Algebra 114 (1997), 221–230.

    Article  MathSciNet  Google Scholar 

  8. D. Daigle, G. Freudenburg, and L. Moser-Jauslin, Locally nilpotent derivations of rings graded by an abelian group, Adv. Stud. Pure Math. 75 (2017), 29–48.

    Google Scholar 

  9. M. de Bondt, Homogeneous quasi-translations and an article of P. Gordan and M. Nöther, Tech. Report 0417, Dept. Math., Radboud Univ. Nijmegen, The Netherlands, 1995.

    Google Scholar 

  10. V. I. Danilov and M. H. Gizatullin, Quasi-translations and counterexamples to the homogeneous dependence problem, Proc. Amer. Math. Soc. 134 (2006), 2849–2856.

    Article  MathSciNet  Google Scholar 

  11. V. I. Danilov and M. H. Gizatullin, Fields of \(\mathbb{G}_{a}\) invariants are ruled, Canad. Math. Bull. 37 (1994), 37–41.

    Article  MathSciNet  Google Scholar 

  12. V. I. Danilov and M. H. Gizatullin, Algebraic aspects of additive group actions on complex affine space, Automorphisms of affine spaces (Dordrecht) (A. van den Essen, ed.), Kluwer, 1995, pp. 179–190.

    Google Scholar 

  13. V. I. Danilov and M. H. Gizatullin, A proper \(\mathbb{G}_{a}\) -action on \(\mathbb{C}^{5}\) which is not locally trivial, Proc. Amer. Math. Soc. 123 (1995), 651–655.

    MathSciNet  Google Scholar 

  14. V. I. Danilov and M. H. Gizatullin, Additive group actions with finitely generated invariants, Osaka J. Math. 44 (2007), 91–98.

    MathSciNet  Google Scholar 

  15. J. Deveney, D. Finston, and M. Gehrke, \(\mathbb{G}_{a}\) -actions on \(\mathbb{C}^{n}\), Comm. Algebra 12 (1994), 4977–4988.

    Google Scholar 

  16. V. Drensky and J.-T. Yu, Exponential automorphisms of polynomial algebras, Comm. Algebra 26 (1998), 2977–2985.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dubouloz, D. Finston, and I. Jaradat, Proper triangular \(\mathbb{G}_{a}\) -actions on \(\mathbb{A}^{4}\) are translations, Algebra Number Theory 8 (2014), 1959–1984.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. B. Elliott, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser, Boston, 2000.

    Google Scholar 

  19. A. van den Essen and S. Washburn, The Jacobian Conjecture for symmetric Jacobian matrices, J. Pure Appl. Algebra 189 (2004), 123–133.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Fauntleroy and A. Magid, Proper \(\mathbb{G}_{a}\) -actions, Duke J. Math. 43 (1976), 723–729.

    Article  MathSciNet  MATH  Google Scholar 

  21. K.-H. Fieseler, Triangulability criteria for additive group actions on affine space, J. Pure and Appl. Algebra 105 (1995), 267–275.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Gordan and M. Nöther, Über die algebraische Formen, deren Hesse’sche Determinante identisch verschwindet, Math. Ann. 10 (1876), 547–568.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Ivanenko, Some classes of linearizable polynomial maps, J. Pure Appl. Algebra 126 (1998), 223–232.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Jorgenson, A note on a class of rings found as \(\mathbb{G}_{a}\) -invariants for locally trivial actions on normal affine varieties, Rocky Mountain J. Math. 34 (2004), 1343–1352.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. W. E. Jung, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), 439–451.

    Article  MathSciNet  Google Scholar 

  26. M. Karaś, Locally nilpotent monomial derivations, Bull. Pol. Acad. Sci. Math. 52 (2004), 119–121.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. G. Koshevoi, Locally nilpotent derivations, a new ring invariant and applications, Lecture notes, Bar-Ilan University, 1998. Avail. at http://www.math.wayne.edu/~lml/.

  28. E. G. Koshevoi, Locally nilpotent derivations of affine domains, CRM Proc. Lecture Notes 54 (2011), 221–229.

    Article  MathSciNet  Google Scholar 

  29. L. Makar-Limanov, P. van Rossum, V. Shpilrain, and J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341–349.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. H. McKay and, On Automorphism Group ofk[x, y], Lectures in Math. Kyoto Univ., vol. 5, Kinokuniya Bookstore, Tokyo, 1972.

    Google Scholar 

  31. A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Toruń, 1994.

    MATH  Google Scholar 

  32. V. L. Popov, On actions of \(\mathbb{G}_{a}\) on \(\mathbb{A}^{n}\), Algebraic Groups, Utrecht 1986 (New York), Lectures Notes in Math., vol. 1271, Springer-Verlag, 1987, pp. 237–242.

    Google Scholar 

  33. I. Shestakov and U. Umirbaev, Poisson brackets and two-generated subalgebras of ring of polynomials, J. Amer. Math. Soc. 17 (2004), 181–196.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. R. Shastri, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197–227.

    Article  MathSciNet  Google Scholar 

  35. M. K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), 209–212.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. M. Snow, Triangular actions on \(\mathbb{C}^{3}\), Manuscripta Mathematica 60 (1988), 407–415.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. M. Snow, Unipotent actions on affine space, Topological Methods in Algebraic Transformation Groups, Progress in Mathematics, vol. 80, Birkhäuser, 1989, pp. 165–176.

    Google Scholar 

  38. Z. Wang, Locally Nilpotent Derivations of Polynomial Rings, Ph.D. thesis, Univ. Ottawa, 1999.

    Google Scholar 

  39. W. V. Vasconcelos, Homogeneization of locally nilpotent derivations and an application tok[x, y, z], J. Pure Appl. Algebra 196 (2005), 323–337.

    Google Scholar 

  40. J. Winkelmann, On free holomorphic \(\mathbb{C}\) -actions on \(\mathbb{C}^{n}\) and homogeneous Stein manifolds, Math. Ann. 286 (1990), 593–612.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. L. Wright, The generalized amalgamated product structure of the tame automorphism group in dimension three, Transform. Groups 20 (2014), 291–304.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Freudenburg, G. (2017). Polynomial Rings. In: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol 136.3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55350-3_3

Download citation

Publish with us

Policies and ethics