Skip to main content

Part of the book series: Encyclopaedia of Mathematical Sciences ((EMS,volume 136.3))

Abstract

Throughout this chapter, assume thatB is an integral domain containing a fieldk of characteristic zero.B is referred to as ak-domain.B denotes the group of units ofB and frac(B) denotes the field of fractions ofB. Further, Aut(B) denotes the group of ring automorphisms ofB, and Aut k (B) denotes the group of automorphisms ofB as ak-algebra. IfAB is a subring, then tr.deg A B denotes the transcendence degree of frac(B) over frac(A). The ideal generated byx 1, , x n B is denoted by either (x 1, , x n ) orx 1 B + ⋯ +x n B. The ring ofm ×n matrices with entries inB is indicated by \(\mathcal{M}_{m\times n}(B)\) and the ring ofn ×n matrices with entries inB is indicated by \(\mathcal{M}_{n}(B)\). The transpose of a matrixM isM T.

Why should we study derivations? Answer: they occur naturally all over the place. Irving Kaplansky [ 242 ]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The termplinth commonly refers to the base of a column or statue.

  2. 2.

    Note that the termregular action is also used in the literature to indicate an algebraic action . A regular action is thus distinguished from arational action , which refers to the action of a group by birational automorphisms.

  3. 3.

    Vasconcelos’s definition of “locally finite” is the same as the present definition of locally nilpotent. Apparently, the terminology at the time (1969) was not yet settled.

References

  1. S. Abhyankar, P. Eakin, and W. Heinzer,On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra23 (1972), 310–342.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Alhajjar,Locally nilpotent derivations of integral domains, Ph.D. thesis, Universite de Bourgogne, 2015.

    Google Scholar 

  3. I. V. Arzhantsev,Algebraic group actions on affine spaces, Contemp. Math.43 (1985), 1–23.

    Article  MathSciNet  Google Scholar 

  4. A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc, and P. Swinnerton-Dyer,Variétés stablement rationnelles non rationnelles, Ann. of Math. (2)121 (1985), 283–318.

    Google Scholar 

  5. A. Bialynicki-Birula,Remarks on the action of an algebraic torus onk n, Bull. Acad. Pol. Sci.14 (1966), 177–181.

    MathSciNet  Google Scholar 

  6. L.P. Bedratyuk,Remarks on the action of an algebraic torus onk n,II, Bull. Acad. Pol. Sci.15 (1967), 123–125.

    Google Scholar 

  7. L.P. Bedratyuk,On fixed point schemes of actions of multiplicative and additive groups, Topology12 (1973), 99–103.

    Article  MathSciNet  Google Scholar 

  8. A. Borel,Linear Algebraic Groups, GTM, vol. 126, Springer-Verlag, 1991, Berlin, Heidelberg, New York.

    Google Scholar 

  9. W. Bruns and J. Herzog,Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, 1993.

    Google Scholar 

  10. G. Castelnuovo,Sulla razionalità delle involuzioni piane, Math. Ann.44 (1894), 125–155.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Cohen and J. Draisma,From Lie algebras of vector fields to algebraic actions, Transform. Groups8 (2003), 51–68.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. V. Choodnovsky,Rigid rings and Makar-Limanov techniques, Comm. Algebra41 (2013), 4248–4266.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Daigle,Locally Nilpotent Derivations, Lecture Notes for the 26th Autumn School of Algebraic Geometry, Łukȩcin, Poland, September 2003. Avail. at http://aix1.uottawa.ca/~ddaigle/.

  14. P. C. Craighero,On some properties of locally nilpotent derivations, J. Pure Appl. Algebra114 (1997), 221–230.

    Article  MathSciNet  Google Scholar 

  15. P. C. Craighero,Triangular derivations ofk[x, y, z], J. Pure Appl. Algebra214 (2010), 1173–1180.

    Google Scholar 

  16. D. Daigle, G. Freudenburg, and L. Moser-Jauslin,Locally nilpotent derivations of rings graded by an abelian group, Adv. Stud. Pure Math.75 (2017), 29–48.

    Google Scholar 

  17. H. Derksen,The kernel of a derivation, J. Pure Appl. Algebra84 (1993), 13–16.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Derksen and G. Kemper,Computational Invariant Theory, Springer Verlag, Berlin, Heidelberg, New York, 2002.

    Book  MATH  Google Scholar 

  19. V. I. Danilov and M. H. Gizatullin,Fields of \(\mathbb{G}_{a}\) invariants are ruled, Canad. Math. Bull.37 (1994), 37–41.

    Article  MathSciNet  Google Scholar 

  20. J. Deveney, D. Finston, and M. Gehrke, \(\mathbb{G}_{a}\) -actions on \(\mathbb{C}^{n}\), Comm. Algebra12 (1994), 4977–4988.

    Google Scholar 

  21. J. Dieudonné and J. Carrell,Invariant theory, old and new, Adv. Math.4 (1970), 1–80.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Dolgachev,Lectures on Invariant Theory, London Math. Soc. Lect. Notes Series, vol. 296, Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar 

  23. J. Draisma,Lie algebras of vector fields, Ph.D. thesis, Technische Universiteit Eindhoven (The Netherlands), 2002.

    Google Scholar 

  24. V. Drensky and J.-T. Yu,Exponential automorphisms of polynomial algebras, Comm. Algebra26 (1998), 2977–2985.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Eisenbud,Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, 1995.

    Google Scholar 

  26. A. van den Essen,Locally finite and locally nilpotent derivations with applications to polynomial flows and morphisms, Proc. Amer. Math. Soc.116 (1992), 861–871.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. B. Elliott,Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser, Boston, 2000.

    Google Scholar 

  28. G. Freudenburg,Canonical factorization of the quotient morphism for an affine \(\mathbb{G}_{a}\) -variety, arXiv:1602.08786v2.

    Google Scholar 

  29. K.-H. Fieseler,Triangulability criteria for additive group actions on affine space, J. Pure and Appl. Algebra105 (1995), 267–275.

    Article  MathSciNet  MATH  Google Scholar 

  30. K.-H. Fieseler,Laurent cancellation for rings of transcendence one over a field, Springer Proc. Math. Stat.79 (2014), 313–326.

    Article  MathSciNet  Google Scholar 

  31. K.-H. Fieseler,An affine version of a theorem of Nagata, Kyoto J. Math.55 (2015), 663–672.

    Article  MathSciNet  Google Scholar 

  32. K.-H. Fieseler,Locally nilpotent derivations of rings with roots adjoined, Michigan Math. J.62 (2013), 227–258.

    Article  MathSciNet  Google Scholar 

  33. A. Fujiki,The fixed point set of \(\mathbb{C}\) actions on a compact complex space, Osaka J. Math.32 (1995), 1013–1022.

    MathSciNet  MATH  Google Scholar 

  34. M. H. Gizatullin,Über biquadratische Gleichungen, Math. Ann.29 (1887), 318–326.

    Article  MathSciNet  Google Scholar 

  35. G.-M. Greuel and G. Pfister,Geometric quotients of unipotent group actions, Proc. London Math. Soc.67 (1993), 75–105.

    Article  MathSciNet  MATH  Google Scholar 

  36. G.-M. Greuel and,Algebraic Homogeneous Spaces and Invariant Theory, Lect. Notes in Math., vol. 1673, Springer Verlag, 1997.

    Google Scholar 

  37. J. Harris,Algebraic Geometry: A First Course, GTM, vol. 133, Springer-Verlag, 1992.

    Google Scholar 

  38. R. Hartshorne,Algebraic Geometry, GTM, vol. 52, Springer-Verlag, 1977.

    Google Scholar 

  39. G. Horrocks,Fixed point schemes of additive group actions, Topology8 (1969), 233–242.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. E. Humphreys,Linear Algebraic Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1981.

    MATH  Google Scholar 

  41. D. Husemoller,Fibre Bundles, third ed., Springer-Verlag, Berlin, Heidelberg, New York, 1994.

    Google Scholar 

  42. J. Igusa,On a theorem of Lueroth, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.26 (1951), 251–253.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Kaliman and M. Zaidenberg,Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups4 (1999), 53–95.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. C. Kang,The cancellation problem, J. Pure Appl. Algebra47 (1987), 165–171.

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Kaplansky,Algebraic and analytic aspects of operator algebras, CBMS Regional Conference Series in Mathematics, vol. 1, American Mathematical Society, 1970.

    Google Scholar 

  46. E. G. Koshevoi,Birational representations of multiplicative and additive groups, Sib. Math. J.8 (1967), 1016–1021.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Kraft,Geometrische Methoden in der Invariantentheorie, Vieweg-Verlag, 1985, Braunschweig.

    Google Scholar 

  48. H. Kraft and C. Procesi,Classical Invariant Theory: A Primer, 1996, avail. at www.math.unibas-ch.

  49. E. Kunz,Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985, Boston, Basel, Stuttgart.

    Google Scholar 

  50. J. Lüroth,Beweis eines Satzes über rationale Kurven, Math. Ann.9 (1876), 163–165.

    Article  MATH  Google Scholar 

  51. E. G. Koshevoi,Locally nilpotent derivations, a new ring invariant and applications, Lecture notes, Bar-Ilan University, 1998. Avail. at http://www.math.wayne.edu/~lml/.

  52. E. G. Koshevoi,On the hypersurfacex +x 2 y +z 2 +t 3 = 0in \(\mathbb{C}^{4}\) or a \(\mathbb{C}^{3}\) -like threefold which is not \(\mathbb{C}^{3}\), Israel J. Math.96 (1996), 419–429.

    Google Scholar 

  53. H. Matsumura,Commutative Ring Theory, Cambridge Studies in Adv. Math., vol. 8, Cambridge University Press, 1986.

    Google Scholar 

  54. J. H. McKay and, \(\mathbb{G}_{a}\) -action of the affine plane, Nagoya Math. J.41 (1971), 97–100.

    Google Scholar 

  55. J. H. McKay and,Algebraic Geometry, Translations of Math. Monographs, vol. 136, American Mathematical Society, Providence, 1990.

    Google Scholar 

  56. J. H. McKay and,Vector fields on factorial schemes, J. Algebra173 (1995), 144–165.

    Google Scholar 

  57. J. H. McKay and,Note on orbit spaces, Osaka J. Math.14 (1962), 21–31.

    Google Scholar 

  58. J. H. McKay and,A theorem on valuation rings and its applications, Nagoya Math. J.29 (1967), 85–91.

    Google Scholar 

  59. J. H. McKay and,Polynomial rings and affine spaces, CBMS Regional Conference Series in Mathematics, vol. 37, American Mathematical Society, 1978.

    Google Scholar 

  60. D. G. Northcott,Affine Sets and Afine Groups, London Math. Society Lecture Note Series, vol. 39, Cambridge University Press, Cambridge, UK, 1980.

    Google Scholar 

  61. P. Nousiainen and M. Sweedler,Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra29 (1983), 93–97.

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Nowicki,Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Toruń, 1994.

    MATH  Google Scholar 

  63. D. G. Northcott,Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra96 (1994), 47–55.

    Article  MathSciNet  Google Scholar 

  64. J. Ohm,On ruled fields, Séminaire de Théorie des Nombres, Bordeaux1 (1988–1989), 27–49.

    Google Scholar 

  65. V. L. Popov,Bass’ triangulability problem, Adv. Stud. Pure Math., Math. Soc. Japan (to appear).

    Google Scholar 

  66. V. L. Popov,Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Math. Monographs, vol. 100, Amer. Math. Soc., Providence, 1992.

    Google Scholar 

  67. M. Rosenlicht,On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc.101 (1961), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  68. P. Samuel,Some remarks on Lüroth’s Theorem, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math.27 (1953), 223–224.

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Schwarz,Book review: Groups, Generators, Syzygies, and Orbits in Invariant Theory, by V.L. Popov, Bull. Amer. Math. Soc.29 (1993), 299–304.

    Article  MathSciNet  Google Scholar 

  70. A. Seidenberg,Derivations and integral closure, Pacific J. Math.16 (1966), 167–173.

    Google Scholar 

  71. T. Siebert,Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0, Math. Ann.305 (1996), 271–286.

    Article  MathSciNet  MATH  Google Scholar 

  72. T. A. Springer,Linear Algebraic Groups, Second Edition, Progress in Mathematics, vol. 9, Birkhäuser (Boston, Basel, Berlin), 1998.

    Google Scholar 

  73. E. Steinitz,Algebraische Theorie der Körper, J. Reine Angew. Math.137 (1910), 167–309.

    MathSciNet  MATH  Google Scholar 

  74. W. V. Vasconcelos,Derivations of commutative noetherian rings, Math Z.112 (1969), 229–233.

    Article  MathSciNet  MATH  Google Scholar 

  75. Z. Škoda,Noncommutative localization in noncommutative geometry, London Math. Soc. Lecture Note Ser.330 (2006), 220–313.

    MathSciNet  MATH  Google Scholar 

  76. W. V. Vasconcelos,Invariant rings and quasiaffine quotients, Math. Z.244 (2003), 163–174.

    Article  MathSciNet  MATH  Google Scholar 

  77. D. L. Wright,On the Jacobian Conjecture, Illinois J. of Math.25 (1981), 423–440.

    MathSciNet  MATH  Google Scholar 

  78. V. Zurkowski,Locally finite derivations, preprint, 26 pages.

    Google Scholar 

  79. D. L. Wright,Locally finite derivations in dimension three, preprint, 76 pages.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Freudenburg, G. (2017). First Principles. In: Algebraic Theory of Locally Nilpotent Derivations. Encyclopaedia of Mathematical Sciences, vol 136.3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55350-3_1

Download citation

Publish with us

Policies and ethics