Skip to main content

Nucleation Nature of Traffic Breakdown—Empirical Fundamental of Transportation Science

  • Chapter
  • First Online:
Breakdown in Traffic Networks

Abstract

In this chapter, based on an analysis of real field traffic data we will disclose the nature of probabilistic empirical traffic breakdown at highway bottlenecks. We will show that in accordance with hypotheses of the three-phase theory, free flow at a highway bottleneck is indeed metastable with respect to a phase transition from free flow to synchronized flow at the bottleneck. In other words, we will prove that empirical traffic breakdown exhibits the nucleation nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the number of trucks must be conserved between ramps, we observe sometimes that a wave can also reform or even disperse over time between road intersections. This might be explained by a complex spatiotemporal dynamics of fast cars that overtake the trucks. However, this microscopic spatiotemporal dynamics of the waves cannot be resolved in 1 minute averaged data. Empirical vehicle trajectories of (almost) all vehicles in free flow, which are required for an analysis of this wave dynamics in free flow, are not currently available.

  2. 2.

    Empirical features of effective bottleneck location have been explained in Sec. 9.2 of the book [18].

  3. 3.

    Only a few trucks with a special permit from authorities may be allowed.

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford 1961)

    MATH  Google Scholar 

  2. C.W. Gardiner, Handbook of Stochastic Methods, 2nd edn. (Springer, Berlin, 1990)

    MATH  Google Scholar 

  3. H. Haken, Synergetics (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  4. B.S. Kerner, in Proceedings of the 3 rd Symposium on Highway Capacity and Level of Service, ed. by R. Rysgaard, vol. 2, (Road Directorate, Ministry of Transport, Denmark, 1998), pp. 621–642

    Google Scholar 

  5. B.S. Kerner, Trans. Res. Rec. 1678, 160–167 (1999)

    Article  Google Scholar 

  6. B.S. Kerner, in Transportation and Traffic Theory, ed. by A. Ceder. (Elsevier Science, Amsterdam, 1999), pp. 147–171

    Google Scholar 

  7. B.S. Kerner, Physics World 12, 25–30 (August 1999)

    Article  Google Scholar 

  8. B.S. Kerner. J. Phys. A Math. Gen. 33, L221–L228 (2000)

    Article  MathSciNet  Google Scholar 

  9. B.S. Kerner, in Traffic and Granular Flow ’99: Social, Traffic and Granular Dynamics, ed. by D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Springer, Heidelberg, Berlin, 2000), pp. 253–284

    Google Scholar 

  10. B.S. Kerner, Transp. Res. Rec. 1710. 136–144 (2000)

    Google Scholar 

  11. B.S. Kerner, Netw. Spat. Econ. 1, 35–76 (2001)

    Article  Google Scholar 

  12. B.S. Kerner, Transp. Res. Rec. 1802, 145–154 (2002)

    Article  Google Scholar 

  13. B.S. Kerner, in Traffic and Transportation Theory in the 21st Century, ed. by M.A.P. Taylor (Elsevier Science, Amsterdam, 2002), pp. 417–439

    Google Scholar 

  14. B.S. Kerner, Phys. Rev. E. 65, 046138 (2002)

    Article  Google Scholar 

  15. B.S. Kerner, Math. Comput. Modell. 35, 481–508 (2002)

    Article  Google Scholar 

  16. B.S. Kerner, in Traffic and Granular Flow’ 01, ed. by M. Schreckenberg, Y. Sugiyama, D. Wolf (Springer, Berlin, 2003), pp. 13–50

    Google Scholar 

  17. B.S. Kerner, Physica A 333, 379–440 (2004)

    Article  MathSciNet  Google Scholar 

  18. B.S. Kerner, The Physics of Traffic (Springer, Berlin, New York, 2004)

    Book  Google Scholar 

  19. B.S. Kerner, in Transportation Research Trends, ed. by P.O. Inweldi. (Nova Science Publishers, New York, 2008), pp. 1–92

    Google Scholar 

  20. B.S. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Heidelberg, Dordrecht, London, New York, 2009)

    Book  MATH  Google Scholar 

  21. B.S. Kerner, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9302–9355

    Google Scholar 

  22. B.S. Kerner, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9355–9411

    Google Scholar 

  23. B.S. Kerner, Physica A 392, 5261–5282 (2013)

    Article  MathSciNet  Google Scholar 

  24. B.S. Kerner, Phys. Rev. E 92, 062827 (2015)

    Article  Google Scholar 

  25. B.S. Kerner, Elektrotechnik und Informationstechnik 132, 417–433 (2015)

    Article  Google Scholar 

  26. B.S. Kerner Physica A 450, 700–747 (2016)

    Google Scholar 

  27. B.S. Kerner, M. Koller, S.L. Klenov, H. Rehborn, M. Leibel, Physica A 438, 365–397 (2015)

    Article  Google Scholar 

  28. B.S. Kerner, V.V. Osipov, Sov. Phys. Usp. 32, 101–138 (1989)

    Article  Google Scholar 

  29. B.S. Kerner, V.V. Osipov, Sov. Phys. Usp. 33, 679–719 (1990)

    Article  Google Scholar 

  30. B.S. Kerner, V.V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kluwer, Dordrecht, Boston, London, 1994)

    Book  Google Scholar 

  31. B.S. Kerner, H. Rehborn, R.-P. Schäfer, S.L. Klenov, J. Palmer, S. Lorkowski, N. Witte, Physica A 392, 221–251 (2013)

    Article  Google Scholar 

  32. A.S. Mikhailov, Foundations of Synergetics I, 2nd edn. (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  33. A.S. Mikhailov, A.Yu. Loskutov, Foundation of Synergetics II. Complex Patterns (Springer, Berlin, 1991)

    Google Scholar 

  34. G. Nicolic, I. Prigogine, Self-Organization in Non-equilibrium Systems (Wiley, New York, 1977)

    Google Scholar 

  35. F.-J. Niedernostheide (ed.) Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices (Springer, Berlin, 1995)

    Google Scholar 

  36. G.M. Pound, V.K. La Mer, J. Am. Chem. Soc. 74, 2323 (1952)

    Article  Google Scholar 

  37. E. Sanz, C. Vega, J.R. Espinosa, R. Cabellero-Bernal, J.L.F. Abascal, C. Valeriani, J. Am. Chem. Soc. 135, 15008–15017 (2013)

    Article  Google Scholar 

  38. V.A. Vasil’ev, Yu.M. Romanovskii, D.S. Chernavskii, V.G. Yakhno, Autowave Processes in Kinetic Systems (Springer, Berlin, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kerner, B.S. (2017). Nucleation Nature of Traffic Breakdown—Empirical Fundamental of Transportation Science. In: Breakdown in Traffic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54473-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54473-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54471-6

  • Online ISBN: 978-3-662-54473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics