Skip to main content

Achievements of Empirical Studies of Traffic Breakdown at Highway Bottlenecks

  • Chapter
  • First Online:
Breakdown in Traffic Networks

Abstract

Traffic breakdown is almost daily observed in traffic networks of any industrial country of the world. As already emphasized in the book introduction (Sect. 1.1), traffic breakdown is a transition from free flow to congested traffic. Therefore, highway capacity of free flow is limited by traffic breakdown. Traffic breakdown with resulting traffic congestion occurs usually at a road bottleneck. Thus, to understand the nature of highway capacity of real traffic, empirical features of traffic breakdown at a highway bottleneck should be known. The objective of this chapter is a discussion of some of important achievements of empirical studies of traffic breakdown at highway bottlenecks in real measured traffic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Rather than the term “flow-rate drop” used here, the empirical flow-rate drop during the breakdown is usually called as “capacity drop” [6, 5355, 77, 79, 85, 93, 115, 129, 167]. The reason why we do not use the well-known term “capacity drop” will be explained in Sect. 4.11.2

  2. 2.

    However, it should be emphasized that the above statement that the discharge flow rate can remain as large as the pre-discharge flow rate is related often only to the discharge flow rate measured during some limited time interval after the breakdown has occurred. Indeed, due to traffic breakdown a congested pattern emerges and further develops upstream of the bottleneck. Therefore, over time (usually 10–30 min after the breakdown has occurred at the bottleneck) the discharge flow rate can decrease considerably during the propagation of the congested pattern upstream of the bottleneck. In particular, this occurs often when due to the so-called pinch effect in synchronized flow upstream of the bottleneck [105], moving jams emerge in the synchronized flow. In this case, the congested pattern can exhibit a very complex spatiotemporal structure consisting of the synchronized flow and wide moving jams. The maximum flow rate in the outflow from a wide moving jam is considerably smaller than the maximum possible flow rate in synchronized flow. This is one of the reasons why the discharge flow rate in the outflow of a well-developed congested pattern at the bottleneck, as well-known from many empirical observations (see, e.g. [93, 94, 137] and references there), can become over time considerably smaller than the pre-discharge flow rate. A brief theoretical discussion of the development of congested patterns required for a comparison of two-phase and three-phase traffic flow models will be done in Sect. 8.4 However, a detailed consideration of the physics of the development of congested patterns and their empirical features are out of scope of this book. The physics of the development of congested patterns and their empirical features can be found in the book [105].

    One of the exclusions of the above case of the decrease in the discharge flow rate over time is shown in Fig. 2.1. In this case, the synchronized flow is localized at the bottleneck (we call such a congested pattern as a localized synchronized flow pattern (LSP) [105]). No pinch effect occurs within the synchronized flow. For this reason, the statement that the discharge flow rate is on average as large as in an initial free flow is valid for this particular case for the whole time of the congested pattern existence (about one hour in Fig. 2.1a).

References

  1. R.E. Allsop, M.G.H. Bell, B.G. Heydecker (eds.), Transportation and Traffic Theory 2007 (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  2. C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, J.-P. Lebacque, M. Schreckenberg (eds.), Traffic and Granular Flow’07 (Springer, Heidelberg, 2009)

    Google Scholar 

  3. P. Athol, Highway Res. Rec. 72, 58–87 (1965)

    Google Scholar 

  4. P. Athol, Highway Res. Rec. 72, 137–155 (1965)

    Google Scholar 

  5. J.H. Banks, Transp. Res. Rec. 1225, 53–60 (1989)

    Google Scholar 

  6. J.H. Banks, Transp. Res. Rec. 1287, 20–28 (1990)

    Google Scholar 

  7. J.H. Banks, “Evaluation of the Two-Capacity Phenomenon as a Basis for Ramp Metering”, Final Report, Civil Engineering Report Series 9002 (San Diego State University, San Diego, CA, 1990)

    Google Scholar 

  8. J.H. Banks, Transp. Res. Rec. 1320, 234–241 (1991)

    Google Scholar 

  9. J.H. Banks, Transp. Res. Rec. 1320, 83–90 (1991)

    Google Scholar 

  10. J.H. Banks, Transp. Res. Rec. 1394, 17–25 (1993)

    Google Scholar 

  11. J.H. Banks, Transp. Res. Rec. 1510, 1–10 (1995)

    Google Scholar 

  12. J.H. Banks, Transp. Res. Rec. 1678, 128–134 (1999)

    Article  Google Scholar 

  13. J.H. Banks, Transp. Res. Rec. 1802, 225–232 (2002)

    Article  Google Scholar 

  14. J.H. Banks, Transp. Res. Rec. 2099, 14–21 (2009)

    Article  Google Scholar 

  15. S. Bassan, A. Faghri, A. Polus, Civil Eng. Environ. Syst. 24, 261–274 (2007)

    Article  Google Scholar 

  16. C.R. Bennett, C.M. Dunn, Transp. Res. Rec. 1510, 70–75 (1995)

    Google Scholar 

  17. R. Bertini, S. Hansen, K. Bogenberger, Transp. Res. Rec. 1934, 97–107 (2005)

    Article  Google Scholar 

  18. P.H.L. Bovy (ed.), Motorway Analysis: New Methodologies and Recent Empirical Findings (Delft University Press, Delft, 1998)

    Google Scholar 

  19. D. Branston, Transp. Sci. 10, 125–148 (1976)

    Article  Google Scholar 

  20. L. Breiman, R.L. Lawrence, Transp. Res. 7, 77–105 (1973)

    Article  Google Scholar 

  21. L. Breiman, R.L. Lawrence, Transp. Res. 11, 177–182 (1977)

    Article  Google Scholar 

  22. L. Breiman, R.L. Lawrence, D. Goodwin, B. Bailey, Transp. Res. 11, 221–228 (1977)

    Article  Google Scholar 

  23. W. Brilon, J. Geistefeldt, M. Regler, in [133] (2005) pp. 125–144

    Google Scholar 

  24. W. Brilon, M. Regler, J. Geistefeld, Straßenverkehrstechnik, Heft 3, 136 (2005)

    Google Scholar 

  25. W. Brilon, H. Zurlinden, Straßenverkehrstechnik, Heft 4, 164 (2004)

    Google Scholar 

  26. D.J. Buckley, Transp. Sci. 2, 107–133 (1968)

    Article  Google Scholar 

  27. G. Carofiglio, V. Gehlen, D. Perino, in 2011 IEEE Intern. Conf. on Communications (ICC), pp. 1–6 (2011)

    Google Scholar 

  28. M.J. Cassidy, in 2001 IEEE Inter. Transp. Sys. Proc. (IEEE, Oakland, USA, 2001), pp. 513–535

    Google Scholar 

  29. M.J. Cassidy, S. Ahn, Transp. Res. Rec. 1934, 140–147 (2005)

    Article  Google Scholar 

  30. M.J. Cassidy, R.L. Bertini, Transp. Res. B 33, 25–42 (1998)

    Article  Google Scholar 

  31. M.J. Cassidy, B. Coifman, Transp. Res. Rec. 1591, 1–6 (1997)

    Article  Google Scholar 

  32. M.J. Cassidy, A. Skabardonis (eds.), in Papers Selected for the 19th Int. Sym. on Transp. and Traffic Theory. Procedia Soc. Behav. Sci. 17, 1–716 (2011)

    Google Scholar 

  33. M.J. Cassidy, A. Skabardonis, A.D. May, Transp. Res. Rec. 1225, 61–72 (1989)

    Google Scholar 

  34. M.J. Cassidy, J.R. Windover, Transp. Res. Rec. 1484, 73–79 (1995)

    Google Scholar 

  35. A. Ceder, Investigation of Two-Regime Traffic Flow Models at the Micro- and Macroscopic Levels (Ph.D. Thesis, UC, Berkeley University, Berkeley, CA, 1975)

    Google Scholar 

  36. A. Ceder (ed.), Transportation and Traffic Theory (Elsevier Science, Oxford, 1999)

    Google Scholar 

  37. A. Ceder, A.D. May, Transp. Res. Rec. 567, 1–15 (1976)

    Google Scholar 

  38. H.C. Chin, A.D. May, Transp. Res. Rec. 1320, 75–82 (1991)

    Google Scholar 

  39. A.H.F. Chow, X.-Y. Lu, T.Z. Qiu, in IFAC Proceedings Volumes, vol. 42, pp. 472–477 (2009)

    Google Scholar 

  40. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  Google Scholar 

  41. K.G. Courage, Highway Res. Rec. 279, 118–120 (1969)

    Google Scholar 

  42. C.F. Daganzo, M.J. Cassidy, R.L. Bertini, Transp. Res. A. 33, 365–379 (1999)

    Google Scholar 

  43. C.F. Daganzo, J.A. Laval, Report UCB-ITS-RR-93-7 (Institute of Transportation Studies, University of California, Berkeley, 2003)

    Google Scholar 

  44. A. Daou, Oper. Res. 12, 360–361 (1964)

    Article  Google Scholar 

  45. D.S. Dendrinos, Transp. Res. 12, 191–194 (1978)

    Article  Google Scholar 

  46. J. Drake, J. Shofer, A.D. May, Highway Res. Rec. 154, 53–87 (1967)

    Google Scholar 

  47. D.R. Drew, Highway Res. Rec. 99, 47–58 (1965)

    Google Scholar 

  48. D.R. Drew, C.J. Keese, Highway Res. Rec. 99, 1–47 (1965)

    Google Scholar 

  49. R.E. Dudash, A.G.R. Bullen, Transp. Res. Rec. 905, 115–117 (1983)

    Google Scholar 

  50. C.L. Dudek, C.J. Messer, Transp. Res. Rec. 469, 1–15 (1973)

    Google Scholar 

  51. C.L. Dudek, S.H. Richards, Transp. Res. Rec. 869, 14–18 (1982)

    Google Scholar 

  52. S.M. Easa, A.D. May, Transp. Res. Rec. 772, 24–37 (1980)

    Google Scholar 

  53. L. Elefteriadou, in An Introduction to Traffic Flow Theory, Springer Optimization and Its Applications, Vol. 84 (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  54. L. Elefteriadou, A. Kondyli, W. Brilon, F.L. Hall, B. Persaud, S. Washburn, J. Transp. Eng. 140, 04014003 (2014)

    Article  Google Scholar 

  55. L. Elefteriadou, R.P. Roess, W.R. McShane, Transp. Res. Rec. 1484, 80–89 (1995)

    Google Scholar 

  56. L.C. Edie, Oper. Res. 9, 66–77 (1961)

    Article  MathSciNet  Google Scholar 

  57. L.C. Edie, E. Baverez, in Third Int. Sym. on the Theory of Traffic Flow, pp. 26–37 (1995)

    Google Scholar 

  58. L.C. Edie, R.S. Foote, in Highway Research Board Proceedings (HRB, National Research Council, Washington, D.C., 1958), vol. 37, pp. 334–344

    Google Scholar 

  59. L.C. Edie, R.S. Foote, in Highway Research Board Proceedings (HRB, National Research Council, Washington, D.C., 1960), vol. 39, pp. 492–505

    Google Scholar 

  60. L.C. Edie, P. Herman, T.N. Lam, Transp. Sci. 14, 55–76 (1980)

    Article  Google Scholar 

  61. K. Fadhloun, H. Rakha, A. Loulizi, Transp. Lett. 6, 185–196 (2014)

    Article  Google Scholar 

  62. K. Fadhloun, H. Rakha, A. Loulizi, Transp. Res. Rec. 2422, 61–70 (2014)

    Article  Google Scholar 

  63. G. Forbes, F.L. Hall, Transp. Res. A 24, 338 (1990)

    Article  Google Scholar 

  64. T.W. Forbes, J.J. Mullin, M.E. Simpson, in in Proc. 3rd International Symposium on the Theory of Traffic Flow ed. by L.C. Edie (Elsevier, New York, 1967), pp. 97–108

    Google Scholar 

  65. T.W. Forbes, M.E. Simpson, Transp. Sci. 2, 77–104 (1968)

    Article  Google Scholar 

  66. M. Fukui, Y. Sugiyama, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’01 (Springer, Heidelberg, 2003)

    MATH  Google Scholar 

  67. A.V. Gafarian, R.L. Lawrence, P.K. Munjal, J. Pahl, Highway Res. Rec. 349, 13–30 (1971)

    Google Scholar 

  68. N.H. Gartner, C.J. Messer, A.K. Rathi (eds.), Traffic Flow Theory: A State-of-the-Art Report (Transportation Research Board, Washington DC, 2001)

    Google Scholar 

  69. N.H. Gartner, N.H.M. Wilson (eds.), Transportation and Traffic Theory (Elsevier, New York, 1987)

    Google Scholar 

  70. D.C. Gazis, R.S. Foote, Transp. Sci. 3, 255–275 (1969)

    Article  Google Scholar 

  71. D.C. Gazis, R. Herman, Trans. Sci. 26, 223 (1992)

    Article  Google Scholar 

  72. D.C. Gazis, R. Herman, G.H. Weiss, Oper. Res. 10, 658–667 (1962)

    Article  Google Scholar 

  73. J. Geistefeldt, W. Brilon, in [120], pp. 583–602

    Google Scholar 

  74. C.D. van Goeverden, H. Botma, P.H.L. Bovy, Transp. Res. Rec. 1646, 1–8 (1998)

    Article  Google Scholar 

  75. H. Greenberg, A. Daou, Oper. Res. 8, 524–532 (1960)

    Article  Google Scholar 

  76. B.D. Greenshields, in Highway Research Board Proceedings, vol. 14, pp. 448–477 (1935)

    Google Scholar 

  77. F.L. Hall, Trans. Res. A 21, 191–201 (1987)

    Article  Google Scholar 

  78. F.L. Hall, in [68], pp. 2-1–2-36

    Google Scholar 

  79. F.L. Hall, K. Agyemang-Duah, Trans. Res. Rec. 1320, 91–98 (1991)

    Google Scholar 

  80. F.L. Hall, B.L. Allen, M.A. Gunter, Trans. Res. A 20, 197–210 (1986)

    Article  Google Scholar 

  81. F.L. Hall, D. Barrow, Transp. Res. Rec. 1194, 55–65 (1988)

    Google Scholar 

  82. F.L. Hall, W. Brilon, Transp. Res. Rec. 1457, 35–42 (1994)

    Google Scholar 

  83. F.L. Hall, M.A. Gunter, Trans. Res. Rec. 1091, 1–9 (1986)

    Google Scholar 

  84. F.L. Hall, L.M. Hall, Transp. Res. Rec. 1287, 108–118 (1990)

    Google Scholar 

  85. F.L. Hall, V.F. Hurdle, J.H. Banks, Transp. Res. Rec. 1365, 12–18 (1992)

    Google Scholar 

  86. F.L. Hall, A. Pushkar, Y. Shi, Transp. Res. Rec. 1398, 24–30 (1993)

    Google Scholar 

  87. J.J. Haynes, Highway Res. Rec. 99, 59–80 (1965)

    Google Scholar 

  88. D. Helbing, Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  89. D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’99 (Springer, Heidelberg, 2000)

    MATH  Google Scholar 

  90. J.W. Hess, Highway Res. Rec. 27, 69–115 (1963)

    Google Scholar 

  91. J.W. Hess, Highway Res. Rec. 99, 81–116 (1965)

    Google Scholar 

  92. M.P. Heyes, R. Ashworth, Transp. Res. 6, 287–291 (1972)

    Article  Google Scholar 

  93. Highway Capacity Manual 2000 (National Research Council, Transportation Research Boad, Washington, D.C., 2000)

    Google Scholar 

  94. Highway Capacity Manual 2010 (National Research Council, Transportation Research Boad, Washington, D.C., 2010)

    Google Scholar 

  95. B.D. Hillegas, D.G. Houghton, P.J. Athol, Transp. Res. Rec. 495, 53–63 (1974)

    Google Scholar 

  96. S.P. Hoogendoorn, P.H.L. Bovy, Transp. Res. Rec. 1646, 18–28 (1998)

    Article  Google Scholar 

  97. S.P. Hoogendoorn, S. Luding, P.H.L. Bovy, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’03 (Springer, Heidelberg, 2005)

    Google Scholar 

  98. P. Hsu, J.H. Banks, Transp. Res. Rec. 1398, 17–23 (1993)

    Google Scholar 

  99. V.F. Hurdle, P.K. Datta, Transp. Res. Rec. 905, 127–137 (1983)

    Google Scholar 

  100. V.F. Hurdle, D.Y. Solomon, Transp. Sci. 20, 153–163 (1986)

    Article  Google Scholar 

  101. M. Iwasaki, Transp. Res. Rec. 1320, 242–250 (1991)

    Google Scholar 

  102. A. Jia, B. Williams, N. Rouphail, Transp. Res. Rec. 2188, 148–155 (2010)

    Article  Google Scholar 

  103. E.R. Jones, M.E. Goolsby, Highway Res. Rec. 321, 74–82 (1970)

    Google Scholar 

  104. T.R. Jones, R.B. Potts, Oper. Res. 10, 745–763 (1962)

    Article  Google Scholar 

  105. B.S. Kerner, The Physics of Traffic (Springer, Berlin, Heidelberg, New York, 2004)

    Book  Google Scholar 

  106. B.S. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Heidelberg, Dordrecht, London, New York, 2009)

    Book  MATH  Google Scholar 

  107. B.S. Kerner, Physica A 392, 5261–5282 (2013)

    Article  MathSciNet  Google Scholar 

  108. B.S. Kerner Physica A 450, 700–747 (2016)

    Google Scholar 

  109. B.S. Kerner, S.L. Klenov, J. Phys. A Math. Theor. 43, 425101 (2010)

    Article  Google Scholar 

  110. B.S. Kerner, S.L. Klenov, D.E. Wolf, J. Phys. A Math. Gen. 35, 9971–10013 (2002)

    Article  Google Scholar 

  111. B.S. Kerner, M. Koller, S.L. Klenov, H. Rehborn, M. Leibel, Physica A 438, 365–397 (2015)

    Article  Google Scholar 

  112. K.M. Kockelman, Transp. Res. Rec. 1644, 47–56 (1998)

    Article  Google Scholar 

  113. U. Kohler, Transp. Sci. 13, 146–162 (1979)

    Article  Google Scholar 

  114. M. Koller, PhD Thesis (University Tübingen, Germany) (2015)

    Google Scholar 

  115. A. Kondyli, L. Elefteriadou, W. Brilon, F.L. Hall, B. Persaud, S. Washburn, J. Transp. Eng. 139, 931–940 (2013)

    Google Scholar 

  116. M. Koshi, M. Iwasaki, I. Ohkura, in Proc. 8th International Symposium on Transportation and Traffic Theory, ed. by V.F. Hurdle (University of Toronto Press, Toronto, Ontario, 1983), pp. 403

    Google Scholar 

  117. M. Koshi, Inter. Ass. Traffic Safety Sci. 10 (1), (1984)

    Google Scholar 

  118. M. Koshi, in [66] (2003), pp. 199–210

    Google Scholar 

  119. T.N. Lam, R.W. Rothery, Transp. Sci. 4, 293–310 (1970)

    Article  Google Scholar 

  120. W.H.K. Lam, S.C. Wong, H.K. Lo (eds.), Transportation and Traffic Theory 2009 (Springer, Dordrecht, Heidelberg, London, New York, 2009)

    Google Scholar 

  121. J.P. Lebacque, J.B. Lesort, F. Giorgi, Transp. Res. Rec. 1644, 70–79 (1998)

    Article  Google Scholar 

  122. L. Leclercq, S. Chanut, J.B. Lesort, Transp. Res. Rec. 1883, 3–13 (2004)

    Article  Google Scholar 

  123. L. Leclercq, V.L. Knoop, F. Marczak, S.P. Hoogendoorn, Transp. Res. C 62, 171–181 (2016)

    Article  Google Scholar 

  124. J.-B. Lesort (ed.), Transportation and Traffic Theory (Elsevier Science, Oxford, 1996)

    Google Scholar 

  125. W. Leutzbach, Introduction to the Theory of Traffic Flow (Springer, Berlin, 1988)

    Book  Google Scholar 

  126. R.V. Lindgren, R.L. Bertini, D. Helbing, M. Schönhof, Transp. Res. Rec. 1965, 12–22 (2006)

    Article  Google Scholar 

  127. J. van Lint, S.P. Hoogendoorn, Comput. Aid. Civil Infrast. Eng. 24, 1–17 (2009)

    Article  Google Scholar 

  128. E.M. Linzer, R.P. Roess, W.R. McShane, Transp. Res. Rec. 699, 17–24 (1979)

    Google Scholar 

  129. M. Lorenz, L. Elefteriadou, Transp. Res. Circ. E-C018, 84–95 (2000)

    Google Scholar 

  130. R.T. Luttinen, Transp. Res. Rec. 1365, 92–97 (1992)

    Google Scholar 

  131. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1–64 (2005)

    Article  MathSciNet  Google Scholar 

  132. D. Mahalel, A.S. Hakkert, Transp. Sci. 17, 71–86 (1983)

    Article  Google Scholar 

  133. H.S. Mahmassani (ed.), Traffic and Transportation Theory (Elsevier Science, Amsterdam, 2005)

    MATH  Google Scholar 

  134. R. Mahnke, J. Kaupužs, I. Lubashevsky, Phys. Rep. 408, 1–130 (2005)

    Article  Google Scholar 

  135. D.B. Martin, L. Newman, R.T. Johnson, Highway Res. Rec. 432, 25–31 (1973)

    Google Scholar 

  136. A.D. May, Highway Res. Rec. 59, 9–38 (1964)

    Google Scholar 

  137. A.D. May, Traffic Flow Fundamentals (Prentice-Hall, New Jersey, 1990)

    Google Scholar 

  138. A.D. May, P. Athol, W. Parker, J.B. Rudden, Highway Res. Rec. 21, 48–70 (1963)

    Google Scholar 

  139. J.M. McDermott, Transp. Eng. J. 106, 333–348 (1980)

    Google Scholar 

  140. H.S. Mika, J.B. Kreer, L.S. Yuan, Highway Res. Rec. 279, 1–13 (1969)

    Google Scholar 

  141. A.J. Miller, Transp. Sci. 4, 164–186 (1970)

    Article  Google Scholar 

  142. P.K. Munjal, Y.S. Hsu, Transp. Res. Rec. 509, 29–41 (1974)

    Google Scholar 

  143. P.K. Munjal, Y.S. Hsu, R.L. Lawrence, Transp. Res. 5, 257–266 (1971)

    Article  Google Scholar 

  144. P. Munjal, L. Pipes, Transp. Res. 5, 241–255 (1971)

    Article  Google Scholar 

  145. P.K. Munjal, L.A. Pipes, Transp. Sci. 5, 390–402 (1971)

    Article  Google Scholar 

  146. J.C. Muñoz, C.F. Daganzo, in Proc. of the 80th Annual Meeting of the Transportation Research Board (TRB, Washington, D.C., 2001)

    Google Scholar 

  147. J.C. Muñoz, C.F. Daganzo, in Traffic and Transportation Theory, ed. by M.A.P. Taylor (Pergamon, Oxford, 2002) pp 441–462

    Google Scholar 

  148. T. Nagatani, Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  149. K. Nagel, P. Wagner, R. Woesler, Oper. Res. 51, 681–716 (2003)

    Article  MathSciNet  Google Scholar 

  150. A. Nakayama, M. Fukui, M. Kikuchi, K. Hasebe, K. Nishinari, Y. Sugiyama, S-i. Tadaki, S. Yukawa, New J. Phys. 11, 083025 (2009)

    Google Scholar 

  151. L. Neubert, H.Y. Lee, M. Schreckenberg, J. Phys. A Math. Gen. 32, 6517–6525 (1999)

    Article  Google Scholar 

  152. L. Neubert, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 60, 6480–6490 (1999)

    Article  Google Scholar 

  153. L. Neubert, L. Santen, A. Schadschneider, M. Schreckenberg, in [89] (2000), pp. 307–314

    Google Scholar 

  154. G.F. Newell, Transp. Res. B 32, 531 (1988)

    Article  Google Scholar 

  155. G.F. Newell, Inst. of Transp. Studies Research Report UCB ITS-RR-93-3 (University of California, Berkley, 1993)

    Google Scholar 

  156. L. Newman, Highway Res. Rec. 27, 14–43 (1963)

    Google Scholar 

  157. K. Nishinari, M. Hayashi (eds.), Traffic Statistics in Tomei Express Way (The Math. Soc. of Traffic Flow, Japan, 1999)

    Google Scholar 

  158. K. Nishinari, M. Treiber, D. Helbing, Phys. Rev. E 68, 067101 (2003)

    Article  Google Scholar 

  159. D. Owens, M.J. Schofield, Traffic Eng. Cont. 29, 616–623 (1988)

    Google Scholar 

  160. J. Pahl, T. Sands, Transp. Sci. 5, 403–417 (1971)

    Article  Google Scholar 

  161. J.O. Paul, J. Transp. Eng. 142, 04016025 (2016)

    Article  Google Scholar 

  162. B.N. Persaud, “Study of a Freeway Bottleneck to Explore Some Unresolved Traffic Flow Issues”, Ph.D. Dissertation, (University of Toronto, Toronto, Canada, 1986)

    Google Scholar 

  163. B.N. Persaud, F.L. Hall, Trans. Res. A 23, 103–113 (1989)

    Article  Google Scholar 

  164. B.N. Persaud, F.L. Hall, L.M. Hall, Transp. Res. Rec. 1287, 167–175 (1990)

    Google Scholar 

  165. B.N. Persaud, V.F. Hurdle, Transp. Res. Rec. 1194, 191–198 (1988)

    Google Scholar 

  166. B.N. Persaud, V.F. Hurdle, in Proc. of International Symposium on Highway Capacity (Karlsruhe, Germany, 1991)

    Google Scholar 

  167. B.N. Persaud, S. Yagar, R. Brownlee, Trans. Res. Rec. 1634, 64–69 (1998)

    Article  Google Scholar 

  168. B.N. Persaud, S. Yagar, D. Tsui, H. Look, Transp. Res. Rec. 1748, 110–115 (2001)

    Article  Google Scholar 

  169. H. Rehborn, S.L. Klenov, in Springer Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9500–9536

    Chapter  Google Scholar 

  170. H. Rehborn, S.L. Klenov, J. Palmer, Physica A 390, 4466–4485 (2011)

    Article  Google Scholar 

  171. H. Rehborn, M. Koller, J. Adv. Transp. 48, 1107–1120 (2014)

    Google Scholar 

  172. W.R. Reilly, C.C. Gardner, J.H. Kell, FHWA Report No. RD-76-135/137 (Federal Highway Administration, Washington, D.C., 1976)

    Google Scholar 

  173. W.R. Reilly, D.W. Harwood, J.M. Schoen, R.0. Kuehl, K. Bauer, A.D.St. John, Capacity and Level of Service Procedures for Multilane Rural and Suburban Highways, Preliminary draft final report (NCHRP, TRB, National Research Council, Washington, D.C., 1988)

    Google Scholar 

  174. P.I. Richards, Oper. Res. 4, 42–51 (1956)

    Article  Google Scholar 

  175. J. Ringert, T. Urbanik II, Transp. Res. Rec. 1398, 31–41 (1993)

    Google Scholar 

  176. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems (Elsevier Science, New York, 2011)

    MATH  Google Scholar 

  177. A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’05 (Springer, Heidelberg, 2007)

    Google Scholar 

  178. J. Schoen, A.D. May, W. Reilly, T. Urbanik, Final Report, NCHRP Project 3–45, (JHK & Associates and Texas Transportation Institute, 1995)

    Google Scholar 

  179. M. Schönhof, D. Helbing, Transp. Sci. 41, 135–166 (2007)

    Article  Google Scholar 

  180. M. Schönhof, D. Helbing, Transp. Res. B 43, 784–797 (2009)

    Article  Google Scholar 

  181. M. Schreckenberg, D.E. Wolf (eds.), Traffic and Granular Flow’97 (Springer, Singapore, 1998)

    Google Scholar 

  182. M. Shawky, H. Nakamura, Transp. Res. Rec. 2012, 11–19 (2007)

    Article  Google Scholar 

  183. K.R. Smilowitz, C.F. Daganzo, M.J. Cassidy, R.L. Bertini, Transp. Res. Rec. 1678, 225–233 (1999)

    Article  Google Scholar 

  184. J. Sun, L. Zhao, H. Zhang, Transp. Res. Rec. 2421, 64–73 (2014)

    Article  Google Scholar 

  185. M.A.P. Taylor (ed.), Transportation and Traffic Theory in the 21st Century (Elsevier Science, Amsterdam, 2002)

    Google Scholar 

  186. J.R. Tolle, Transp. Res. 8, 91–96 (1974)

    Article  Google Scholar 

  187. M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  188. M. Treiber, A. Kesting, R.E. Wilson, Comput. Aid. Civil Infrast. Eng. 26, 408–419 (2011)

    Article  Google Scholar 

  189. J. Treiterer, Transp. Res. 1, 231–251 (1967)

    Article  Google Scholar 

  190. J. Treiterer, “Investigation of Traffic Dynamics by Aerial Photogrammetry Techniques”, Ohio State University Technical Report PB 246 094 (Columbus, Ohio, 1975)

    Google Scholar 

  191. J. Treiterer, J.A. Myers, in Procs. 6th International Symposium on Transportation and Traffic Theory, ed. by D.J. Buckley (A.H. & AW Reed, London, 1974), pp. 13–38

    Google Scholar 

  192. J. Treiterer, J.I. Taylor, Highway Res. Rec. 142, 1–12 (1966)

    Google Scholar 

  193. T. Urbanik II, W. Hinshaw, K. Barnes, Transp. Res. Rec. 1320, 110–118 (1991)

    Google Scholar 

  194. P. Wasielewski, Transp. Sci. 15, 364–378 (1981)

    Article  Google Scholar 

  195. E.A. Wemple, A.M. Morris, A.D. May, in Procs. of the International Symposium on Highway Capacity, ed. by U. Brannolte (Karlsruhe, Germany, 1991), pp. 439–455

    Google Scholar 

  196. D. Westland, in Proc. of the 3rd Sym. on Highway Capacity and Level of Service, ed. by R. Rysgaard, vol. 2, (Road Directorate, Copenhagen, Ministry of Transport, Denmark, 1998), pp. 1095–1116

    Google Scholar 

  197. J.R. Windover, “Empirical Studies of the Dynamic Features of Freeway Traffic”, Ph.D. Thesis (Dept. of CEE, ITS, UC, Berkeley, 1998)

    Google Scholar 

  198. D.E. Wolf, M. Schreckenberg, A. Bachem (eds.), Traffic and Granular Flow (World Scientific, Singapore, 1995)

    Google Scholar 

  199. S. Yukawa, M. Kikuchi, A. Nakayama, K. Nishinari, Y. Sugiyama, S. Tadaki, in [66] (2003), pp. 243–256

    Google Scholar 

  200. B. Zielke, R. Bertini, M. Treiber, Transp. Res. Rec. 2088, 57–67 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kerner, B.S. (2017). Achievements of Empirical Studies of Traffic Breakdown at Highway Bottlenecks. In: Breakdown in Traffic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54473-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54473-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54471-6

  • Online ISBN: 978-3-662-54473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics