Skip to main content

Deterioration of Traffic System Through Standard Dynamic Traffic Assignment in Networks

  • Chapter
  • First Online:
Breakdown in Traffic Networks
  • 1101 Accesses

Abstract

The main objective of this chapter is to show that applications of this standard methodology of the minimization of network travel times deteriorates traffic system basically while provoking heavy traffic congestion in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sect. 12.4 we have mentioned that in the Kerner-Klenov model used for all simulations in this chapter conditions (5.13) are satisfied and, therefore, the threshold for spontaneous traffic breakdown at a bottleneck is determined by the threshold flow rate q th (B,k) of bottleneck k. For this reason, in simulations with the Kerner-Klenov model the network capacity C net is given by formula (12.17). The threshold flow rate q th (B,k) of on-ramp bottleneck k is larger than the minimum capacity C min (k) of the bottleneck. This explains why the minimum possible theoretical value of the network capacity C net (12.14) is considerably smaller than the network capacity C net (12.17) following from simulations with the Kerner-Klenov model.

  2. 2.

    A comparison of the application of congested pattern control approach used in the main text of the book with a step-by-step method for the searching of the Wardrop’s UE can be found in Appendix C.

  3. 3.

    In the case under consideration, the location of bottleneck 1 is x = x on = 15 km. An F → S transition is registered by the feedback control detector when the speed at the detector v ≤ 80 km/h (for two-route network) and v ≤ 70 km/h (for three route network) during 3 min. A return S → F transition is registered by the feedback control detector when the speed at the detector v ≥ 92 km/h during 2 min.

  4. 4.

    The dynamic traffic assignment of the link inflow rates q m (m = 1, 2 in Fig. 12.3a and m = 1, 2, 3 in Fig. 12.4a) under time-dependent flow rate q (o)(t) (Figs. 13.4–13.6) is performed with the use of standard methods [13, 98, 112, 114, 115, 119]: For some flow rates q (o), values q m have been found in accordance with the Wardrop’s UE (points in Figs. 13.4b and 13.5b). Simulations show that these points are well fitted with lines q m (q (o)) given in captions to Figs. 13.4 and 13.5. These lines have further been used for calculations of q m under time-dependent flow rate q (o)(t).

  5. 5.

    It should be noted that a free assignment of the flow rates q 1 and q 2 is only possible as long as free flow is at the origin of the network. Therefore, simulation results presented in Fig. 13.11 has only the sense as long as a contested pattern occurring in the network has not reached the origin (x = 0 in Figs. 13.11b, right and c, left).

References

  1. K. Abdelghany, D. Valdes, A. Abdelfatah, H.S. Mahmassani, Transp. Res. Rec. 1667, 67–76 (1999)

    Article  Google Scholar 

  2. S.D. Ahipas, R. Meskarian, T.L. Magnanti, K. Natarajan, Transp. Res. B 81, 333–354 (2015)

    Article  Google Scholar 

  3. R.E. Allsop, M.G.H. Bell, B.G. Heydecker (eds.), Transportation and Traffic Theory 2007 (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  4. M. Amirgholy, E.J. Gonzales, Transp. Res. B 92, 234–252 (2016)

    Article  Google Scholar 

  5. D. Atmani, J.-P. Lebacque, N. Bhouri, H. Haj-Salem, Transp. Res. Procedia 3, 895–904 (2014)

    Article  Google Scholar 

  6. H. Bar-Gera, Transp. Sci. 36, 398–417 (2002)

    Article  Google Scholar 

  7. M.G.H. Bell, Transp. Res. B 29, 125–137 (1995)

    Article  Google Scholar 

  8. M.G.H. Bell, Transp. Res. B 29, 287–295 (1995)

    Article  Google Scholar 

  9. M.G.H. Bell, Transp. Res. B 34, 533–545 (2000)

    Article  Google Scholar 

  10. M.G.H. Bell, Ch. Cassir, in 2nd Int. Conf. on Traffic and Transportation Studies (ICTTS), Beijing, China, ed. by K.C. Wang, G. Xiao, J. Ji (American Society of Civil Engineers, USA, 2000), pp. 9–16

    Google Scholar 

  11. M.G.H. Bell, Ch. Cassir, Reliability of Transport Networks (Research Studies Press, Baldock, Hertfordshire, 2000)

    MATH  Google Scholar 

  12. M.G.H. Bell, Ch. Cassir, Transp. Res. B 36, 671–681 (2002)

    Article  Google Scholar 

  13. M.G.H. Bell, Y. Iida, Transportation Network Analysis (Wiley, Hoboken, 1997)

    Book  Google Scholar 

  14. M.G.H. Bell, C.M. Shielda, F. Busch, G. Kruse, Transp. Res. C 5, 197–210 (1997)

    Article  Google Scholar 

  15. D. Boyce, B. Ralevic-Dekic, H. Bar-Gera, J. Transp. Eng. 130, 49–55 (2004)

    Google Scholar 

  16. M. Carey, P. Humphreys, M. McHugh, R. McIvor, Transp. Res. B 65, 90–104 (2014)

    Article  Google Scholar 

  17. M. Carey, D. Watling, Transp. Res. B. 46, 634–648 (2012)

    Article  Google Scholar 

  18. E. Cascetta, M. Gallo, B. Montella, Ann. Oper. Res. 144, 301–328 (2006)

    Article  MathSciNet  Google Scholar 

  19. M.J. Cassidy, A. Skabardonis (eds.), in Papers selected for the 19th Int. Sym. on Transp. and Traffic Theory. Procedia Soc. Behav. Sci. 17, 1–716 (2011)

    Google Scholar 

  20. A. Ceder (ed.), Transportation and Traffic Theory (Elsevier Science, Oxford, 1999)

    Google Scholar 

  21. B. Chen, W. Tong, W. Zhang, X. Sun, B. Wang, EPL 97, 14001 (2012)

    Article  Google Scholar 

  22. B. Chen, W. Tong, W. Zhang, X. Sun, B. Wang, Comput. Phys. Comm. 183, 2081–2088 (2012)

    Article  Google Scholar 

  23. X. Chen, C. Xiong, X. He, Z. Zhu, L. Zhang, Transp. Res. C 63, 71–95 (2016)

    Article  Google Scholar 

  24. H. Ceylan, M.G.H. Bell, J. Adv. Transp. 38, 291–321 (2004)

    Google Scholar 

  25. H. Ceylan, M.G.H. Bell, Transp. Res. B 39, 169–185 (2005)

    Article  Google Scholar 

  26. Y.-C. Chiu, H.S. Mahmassani, Transp. Res. Rec. 1783, 89–97 (2002)

    Article  Google Scholar 

  27. B.D. Chung, H.-J. Cho, T.L. Friesz, H. Huang, T. Yao, Netw. Spat. Econ. 14, 183–207 (2014)

    Article  MathSciNet  Google Scholar 

  28. R. Claes, T. Holvoet, D. Weyns, IEEE Trans. ITS 12, 364–373 (2011)

    Google Scholar 

  29. C.F. Daganzo, Y. Sheffi, Transp. Sci. 11, 253–274 (1977)

    Article  Google Scholar 

  30. C.F. Daganzo, Transp. Res. 11, 385–389 (1977)

    Article  Google Scholar 

  31. C.F. Daganzo, Transp. Res. B 14, 229–239 (1980)

    Article  MathSciNet  Google Scholar 

  32. C.F. Daganzo, Transp. Sci. 32, 3–11 (1998)

    Article  Google Scholar 

  33. C.F. Daganzo, Transp. Res. B 55, 98–117 (2013)

    Article  Google Scholar 

  34. L.C. Davis, Physica A 388, 4459–4474 (2009)

    Article  Google Scholar 

  35. L.C. Davis, Physica A 389, 3588–3599 (2010)

    Article  Google Scholar 

  36. K. Doan, S.V. Ukkusuri, Transp. Res. C 51, 41–65 (2015)

    Article  Google Scholar 

  37. C. Dong, X. Ma, B. Wang, Phys. Lett. A 374, 1326–1331 (2010)

    Article  Google Scholar 

  38. C. Dong, X. Ma, B. Wang, Sci. China-Infor. Sci. 53, 2265–2271 (2010)

    Article  Google Scholar 

  39. C. Dong, X. Ma, G. Wang, B. Wang, X. Sun, Physica A 389, 3274–3281 (2010)

    Article  Google Scholar 

  40. T.L. Friesz, Transp. Res. A 19, 413–427 (1985)

    Article  Google Scholar 

  41. T.L. Friesz, D. Bernstein, in Foundations of Network Optimization and Games, Complex Networks and Dynamic Systems, vol. 3 (Springer, New York, Berlin, 2016)

    Book  MATH  Google Scholar 

  42. T. L. Friesz, D. Bernstein, T.E. Smith, R.L. Tobin, B.W. Wie, Oper. Res. 41, 179–191 (1993)

    Article  MathSciNet  Google Scholar 

  43. T.L. Friesz, D. Bernstein, T.E. Smith R.L. Tobin, B.W. Wie, Oper. Res. 41, 179–191 (1993)

    Article  MathSciNet  Google Scholar 

  44. T.L. Friesz, D. Bernstein, N.J. Mehta, R.L. Tobin, S. Ganjalizadeh, Oper. Res. 42, 1120–1136 (1994)

    Article  MathSciNet  Google Scholar 

  45. T.L. Friesz, H.-J. Cho, N.J. Mehta, R.L. Tobin, G. Anandalingam, Transp. Sci. 26, 18–26 (1992)

    Article  Google Scholar 

  46. T.L. Friesz, K. Han, P.A. Neto, A. Meimand, T. Yao, Transp. Res. B 47, 102–126 (2013)

    Article  Google Scholar 

  47. T.L. Friesz, J. Luque, R.L. Tobin, B.-W. Wie, Oper. Res. 37, 893–901 (1989)

    Article  MathSciNet  Google Scholar 

  48. T.L. Friesz, R.L. Tobin, T.E. Smith, P.T. Harker, J. Reg. Sci. 23, 337–359 (1983)

    Google Scholar 

  49. N.H. Gartner, Transp. Sci. 14, 174–191 (1980)

    Article  Google Scholar 

  50. N.H. Gartner, M. Al-Malik, Transp. Res. Rec. 1554, 27–35 (1996)

    Article  Google Scholar 

  51. N.H. Gartner, Ch. Stamatiadis, Transp. Res. Rec. 1644, 150–156 (1998)

    Article  Google Scholar 

  52. Y.E. Ge, B.R. Sun, H.M. Zhang, W.Y. Szeto, X. Zhou, Netw. Spat. Econ. 15, 583–598 (2015)

    Article  MathSciNet  Google Scholar 

  53. E.J. Gonzales, C.F. Daganzo, Transp. Res. B. 46, 1519–1534 (2012)

    Article  Google Scholar 

  54. M. Haghani, Z. Shahhoseini, M. Sarvi, J. Traffic Transp. Eng. (English Edition) 3, 181–191 (2016)

    Google Scholar 

  55. K. Han, T.L. Friesz, T. Yao, Transp. Res. B 53, 17–30 (2013)

    Article  Google Scholar 

  56. C. Hauck, Y. Sun, I. Timofeyev, Stoch. Dyn. 14, 1350022 (2014)

    Article  MathSciNet  Google Scholar 

  57. P. Hemmerle, M. Koller, H. Rehborn, B.S. Kerner, M. Schreckenberg, IET Intell. Transp. Syst. 10, 122–129 (2016)

    Article  Google Scholar 

  58. P. Hemmerle, M. Koller, G. Hermanns, H. Rehborn, B.S. Kerner, M. Schreckenberg, Collective Dynamics 1, A7:1–27 (2016)

    Google Scholar 

  59. B.G. Heydecker, J.D. Addison, Transp. Sci. 39, 39–57 (2005)

    Article  Google Scholar 

  60. B.G. Heydecker, J.D. Addison, in Transportation Networks: Recent Methodological Advances. Selected Proceedings of the 4th EURO Transportation Meeting, ed. by M.G.H. Bell (Elsevier, Oxford, 1999), pp. 35–49

    Google Scholar 

  61. S.P. Hoogendoorn, V.L. Knoop, H. van Lint (eds.), in 20th International Symposium on Transportation and Traffic Theory (ISTTT 2013). Procedia Soc. Behav. Sci. 80, 1–996 (2013)

    Google Scholar 

  62. S.P. Hoogendoorn, V.L. Knoop, H.J. Van Zuylen, J. Adv. Transp. 42, 357–377 (2008)

    Google Scholar 

  63. H.-J. Huang, W.H.K. Lam, Transp. Res. B 36, 253–273 (2002)

    Article  Google Scholar 

  64. H.-J. Huang, Z.-C. Li, Eur. J. Oper. Res. 176, 1464–1477 (2007)

    Article  Google Scholar 

  65. N. Huynh, H.S. Mahmassani, H. Tavana, Transp. Res. Rec. 1783, 55–65 (2002)

    Article  Google Scholar 

  66. T. Iryo, Netw. Spat. Econ. 15, 599–616 (2015)

    Article  MathSciNet  Google Scholar 

  67. B. Janson, C. Zozaya-Gorostiza, Transp. Res. B 21, 299–310 (1987)

    Article  Google Scholar 

  68. X. Ji, C. Shao, B. Wang, Procedia Engineering 137, 620–629 (2016)

    Article  Google Scholar 

  69. Y. Jiang, S.C. Wong, H.W. Ho, P. Zhang, R. Liu, A. Sumalee, Transp. Res. B 4, 343–363 (2011)

    Article  Google Scholar 

  70. W.-L. Jin, Netw. Spat. Econ. 15, 617–634 (2015)

    Article  MathSciNet  Google Scholar 

  71. I. Juran, J.N. Prashker, S. Bekhor, I. Ishai, Transp. Res. C. 17, 240–258 (2009)

    Article  Google Scholar 

  72. P. Kachroo, S. Sastry, IEEE Trans. ITS 17, 1438–1447 (2016)

    Google Scholar 

  73. G. Kalafatos, S. Peeta, in Transportation and Traffic Theory 2009, ed. by W.H.K. Lam, S.C. Wong, H.K. Lo. (Springer, Dordrecht, Heidelberg, London, New York, 2009), pp. 541–558

    Google Scholar 

  74. A. Karoonsoontawong, D.-Y. Lin, Netw. Spat. Econ. 15, 1011–1048 (2015)

    Article  MathSciNet  Google Scholar 

  75. B.S. Kerner, The Physics of Traffic (Springer, Berlin, Heidelberg, New York, 2004)

    Book  Google Scholar 

  76. B.S. Kerner, Physica A 355, 565–601 (2005)

    Article  Google Scholar 

  77. B.S. Kerner, in Traffic and Transportation Theory, ed. by H.S. Mahmassani (Elsevier Science, Amsterdam, 2005), pp. 181–203

    Google Scholar 

  78. B.S. Kerner, IEEE Trans. ITS 8, 308–320 (2007)

    Google Scholar 

  79. B.S. Kerner, Transp. Res. Rec. 1999, 30–39 (2007)

    Article  Google Scholar 

  80. B.S. Kerner, J. Phys. A Math. Theor. 44, 092001 (2011)

    Article  Google Scholar 

  81. B.S. Kerner, Eur. Phys. J. B 89, 199 (2016)

    Article  Google Scholar 

  82. B.S. Kerner, Physica A 466, 626–662 (2017)

    Article  MathSciNet  Google Scholar 

  83. D. Kupsizewska, D. Van Vliet, in Transport Planning Methods (Proc. PTRC Planning and Transport Summer Ann. Meeting, Univ. Sussex, 1999)

    Google Scholar 

  84. M. Kuwahara, H. Kita, Y. Asakura (eds.), in 21st International Symposium on Transportation and Traffic Theory Transp. Res. Procedia 7, 1–704 (2015)

    Google Scholar 

  85. W.H.K. Lam, K.S. Chan, Z.-C. Li, M.G.H. Bell, J. Adv. Transp. 44, 219–230 (2010)

    Google Scholar 

  86. W.H.K. Lam, Hai-Jun Huang, Transp. Res. B 26, 275–287 (1992)

    Article  Google Scholar 

  87. W.H.K. Lam, S.C. Wong, H.K. Lo (eds.), Transportation and Traffic Theory 2009 (Springer, Dordrecht, Heidelberg, London, New York, 2009)

    Google Scholar 

  88. K. Lee, P. Hui, B. Wang, N. Johnson, J. Phys. Soc. Jpn. 70, 3507–3510 (2001)

    Article  Google Scholar 

  89. J.-B. Lesort (ed.), Transportation and Traffic Theory (Elsevier Science, Oxford, 1996)

    Google Scholar 

  90. F. Leurent, H. Boujnah, Transp. Res. C. 47, 28–46 (2014)

    Article  Google Scholar 

  91. H. Liu, D.Z.W. Wang Transp. Res. B 72, 20–39 (2015)

    Google Scholar 

  92. J. Long, W.Y. Szeto, Z. Gao, H.-J. Huang, Q. Shi, Transp. Res. B 83, 179–206 (2016)

    Article  Google Scholar 

  93. J. Long, W.Y. Szeto, Q. Shi, Z. Gao, H.-J. Huang, Transportmetrica A 11, 388–419 (2015)

    Article  Google Scholar 

  94. C.-C. Lu, H.S. Mahmassani, X. Zhou, Transp. Res. C. 16, 371–389 (2008)

    Article  Google Scholar 

  95. L. Lu, Y. Xu, C. Antoniou, M. Ben-Akiva, Transp. Res. C 51, 149–166 (2015)

    Article  Google Scholar 

  96. P. Luathep, A. Sumalee, W.H.K. Lam, Z-Ch. Li, H.K. Lo, Transp. Res. B 45, 808–827 (2011)

    Google Scholar 

  97. M. Lujak, S. Giordani, S. Ossowski, Neurocomputing 151, 449–460 (2015)

    Article  Google Scholar 

  98. H.S. Mahmassani, Netw. Spat. Econ. 1, 267–292 (2001)

    Article  Google Scholar 

  99. H.S. Mahmassani (ed.), Traffic and Transportation Theory (Elsevier Science, Amsterdam, 2005)

    MATH  Google Scholar 

  100. H.S. Mahmassani, G.L. Chang. Transp. Sci. 21, 89–99 (1987)

    Article  Google Scholar 

  101. H.S. Mahmassani, R. Herman, Transp. Sci. 18, 362–384 (1984)

    Article  Google Scholar 

  102. H.S. Mahmassani, S. Peeta, Transp. Res. Rec. 1408, 83–93 (1993)

    Google Scholar 

  103. D.K. Merchant, G.L. Nemhauser, Transp. Sci. 12, 187–199 (1978)

    Google Scholar 

  104. D.K. Merchant, G.L. Nemhauser, Transp. Sci. 12, 200–207 (1978)

    Article  Google Scholar 

  105. E.D. Miller-Hooks, H.S. Mahmassani, Transp. Sci. 34, 198–215 (2000)

    Article  Google Scholar 

  106. A. Nagurney, J. Dong, Transp. Res. B 36, 445–469 (2002)

    Article  Google Scholar 

  107. Y. Nesterov, A. de Palma, Netw. Spat. Econ. 3, 371–395 (2003)

    Article  Google Scholar 

  108. Y. Nie, H.M. Zhang, Netw. Spat. Econ. 10, 49–71 (2010)

    Article  MathSciNet  Google Scholar 

  109. M. Patriksson, The Traffic Assignment Problem–Models and Methods (VSP, Utrecht, 1994)

    Google Scholar 

  110. S. Peeta, H.S. Mahmassani, Transp. Res. C 3, 83–98 (1995)

    Article  Google Scholar 

  111. S. Peeta, H.S. Mahmassani, Ann. Oper. Res. 60, 81–113 (1995)

    Article  Google Scholar 

  112. S. Peeta, A.K. Ziliaskopoulos, Netw. Spat. Econ. 1, 233–265 (2001)

    Article  Google Scholar 

  113. Z. Qian, R. Rajagopal, Transp. Res. C 48, 468–490 (2014)

    Article  Google Scholar 

  114. H. Rakha, A. Tawfik, in Encyclopedia of Complexity and System Science, ed. by R.A. Meyers (Springer, Berlin, 2009), pp. 9429–9470

    Chapter  Google Scholar 

  115. B. Ran, D. Boyce, Modeling Dynamic Transportation Networks (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  116. B. Ran, D.E. Boyce, L.J. LeBlanc, Oper. Res. 41, 192–202 (1993)

    Article  Google Scholar 

  117. R.A. Reiss, N.H. Gartner, S.L. Cohen, Transp. Res. A 25, 267–276 (1991)

    Article  Google Scholar 

  118. H. Shao, W.H.K. Lam, M.L. Tam, Netw. Spat. Econ. 6, 173–204 (2006)

    Article  MathSciNet  Google Scholar 

  119. Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods (Prentice-Hall, New Jersey, 1984)

    MATH  Google Scholar 

  120. W. Shen, H.M. Zhang, Transp. Res. B 65, 1–17 (2014)

    Article  Google Scholar 

  121. V.I. Shvetsov, Autom. Remote Control 70, 1728–1736 (2009)

    Article  MathSciNet  Google Scholar 

  122. A. Sopasakis, M.A. Katsoulakis, SIAM J. Appl. Math. 66, 921–944 (2006)

    Article  MathSciNet  Google Scholar 

  123. Y. Sun, I. Timofeyev Phys. Rev. E 89, 052810 (2014)

    Google Scholar 

  124. Ch. Suwansirikul, T.L. Friesz, R.L. Tobin, Transp. Sci. 21, 254–263 (1987)

    Article  Google Scholar 

  125. Z. Tan, H. Yang, R.-Y. Guo, Transp. Res. C 61, 87–105 (2015)

    Article  Google Scholar 

  126. M.A.P. Taylor (ed.), Transportation and Traffic Theory in the 21st Century (Elsevier Science, Amsterdam, 2002)

    Google Scholar 

  127. R.L. Tobin, T.L. Friesz, Transp. Sci. 22, 242–250 (1988)

    Article  Google Scholar 

  128. K. Tobita, T. Nagatani, Physica A 391, 6137–6145 (2012)

    Article  Google Scholar 

  129. J. Wahle, A.L.C. Bazzan, F. Klugl, M. Schreckenberg, Physica A 287, 669 (2000)

    Article  Google Scholar 

  130. J. Wahle, A. Bazzan, F. Klugl, M. Schreckenberg, Transp. Res. C 10, 399–417 (2002)

    Article  Google Scholar 

  131. W. Wang, B. Wang, W. Zheng, C. Yin, T. Zhou, Phys. Rev. E 72, 066702 (2005)

    Article  Google Scholar 

  132. J.G. Wardrop, in Proc. of Inst. of Civil Eng. II. 1, 325–378 (1952)

    Google Scholar 

  133. B.-W. Wie, T.L. Friesz, R.L. Tobin, Transp. Res. B 24, 431–442 (1990)

    Article  Google Scholar 

  134. X. Xu, A. Chen, S. Kitthamkesorn, H. Yang, H.K. Lo, Transp. Res. B 81, 686–703 (2015)

    Article  Google Scholar 

  135. J. Yang, G. Jiang, Transp. Res. C 47, 168–178 (2014)

    Article  Google Scholar 

  136. H. Yang, M.G.H. Bell, Transp. Res. B 31, 303–314 (1997)

    Article  Google Scholar 

  137. H. Yang, M.G.H. Bell, Transp. Res. B 32, 539–545 (1998)

    Article  Google Scholar 

  138. H. Yang, M.G.H. Bell, Transp. Rev. 18, 257–278 (1998)

    Article  Google Scholar 

  139. H. Yang, M.G.H. Bell, Q. Menga, Transp. Res. B 34, 255–275 (2000)

    Article  Google Scholar 

  140. H. Yang, X. Zhang, Q. Meng, Transp. Res. B 38, 191–213 (2004)

    Article  Google Scholar 

  141. Q. Yu, D. Fang, W. Du, Eur. J. Oper. Res. 239, 112–118 (2014)

    Article  Google Scholar 

  142. C. Zhang, X. Chen, A. Sumalee, Transp. Res. B 45, 534–552 (2011)

    Article  Google Scholar 

  143. K. Zhang, H.S. Mahmassani, C.-C. Lu, Transp. Res. Rec. 2085, 86–94 (2008)

    Article  Google Scholar 

  144. K. Zhang, H.S. Mahmassani, C.-C. Lu, Transp. Res. C 27, 189–204 (2013)

    Article  Google Scholar 

  145. X. Zhang, H. Yang, Transp. Res. B 38, 517–537 (2004)

    Article  Google Scholar 

  146. X. Zhang, H. Yang, H.-J. Huang, Eur. J. Oper. Res. 189, 146–158 (2008)

    Article  Google Scholar 

  147. C. Zhao, B. Fu, T. Wang, Transp. Res. E 61, 135–141 (2014)

    Article  Google Scholar 

  148. C.-L. Zhao, H.-J. Huang, Transp. Res. C 68, 22–37 (2016)

    Article  Google Scholar 

  149. X.-M. Zhao, D.-f. Xie, Q. Li, Comput. Phys. Comm. 187, 106–114 (2015)

    Article  Google Scholar 

  150. X. Zhou, H.S. Mahmassani, K. Zhang, Transp. Res. C 16, 167–186 (2008)

    Article  Google Scholar 

  151. A.K. Ziliaskopoulos, D. Kotzinos, H.S. Mahmassani, Transp. Res. C 5, 95–107 (1997)

    Article  Google Scholar 

  152. A.K. Ziliaskopoulos, Transp. Sci. 34, 37–49 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kerner, B.S. (2017). Deterioration of Traffic System Through Standard Dynamic Traffic Assignment in Networks. In: Breakdown in Traffic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54473-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54473-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54471-6

  • Online ISBN: 978-3-662-54473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics