Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

The constituent components of conventional devices are carved out of larger materials relying on physical methods. This top-down approach to engineered building blocks becomes increasingly challenging as the dimensions of the target structures approach the nanoscale. Nature, on the other hand, assembles nanoscaled biomolecules relying on chemical strategies. Small molecular building blocks are joined to produce nanostructures with defined geometries and specific functions. It is becoming apparent that Nature's bottom-up approach to functional nanostructures can be mimicked to produce artificial molecules with nanoscaled dimensions and engineered properties. Indeed, examples of artificial nanohelices , nanotubes and molecular motors are starting to be developed. Some of these fascinating chemical systems have intriguing electrochemical and photochemical properties, which can be exploited to manipulate chemical, electrical and optical signals at the molecular level. This tremendous opportunity has led to the development of the molecular equivalent of conventional logic gates. Indeed, simple logic operations can be reproduced with collections of molecules operating in solution. Most of these chemical systems, however, rely on bulk addressing to execute combinational and sequential logic operations. It is essential to devise methods to reproduce these useful functions in solid-state configurations and, eventually, with single molecules. These challenging objectives are stimulating the design of clever devices that interface small assemblies of organic molecules with macroscaled and nanoscaled electrodes. These strategies have already produced rudimentary examples of diodes, switches and transistors based on functional molecular components. The rapid and continuous progress of this exploratory research will, hopefully, lead to an entire generation of molecule-based devices that might ultimately find useful applications in a variety of fields ranging from biomedical research to information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Voet, J.G. Voet: Biochemistry (Wiley, New York 2010)

    Google Scholar 

  2. K.C. Nicolau, J.S. Chen: Classics in Total Synthesis (Wiley-VCH, Weinheim 2011)

    Google Scholar 

  3. J.W. Steed, J.L. Atwood: Supramolecular Chemistry (Wiley, New York 2009)

    Book  Google Scholar 

  4. M.M. Harding, U. Koert, J.-M. Lehn, A. Marquis-Rigault, C. Piguet, J. Siegel: Synthesis of unsubstituted and 4,4-substituted oligobipyridines as ligand strands for helicate self-assembly, Helv. Chim. Acta 74, 594–610 (1991)

    Article  Google Scholar 

  5. J.-M. Lehn, A. Rigault, J. Siegel, B. Harrowfield, B. Chevrier, D. Moras: Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix, Proc. Natl. Acad. Sci. USA 84, 2565–2569 (1987)

    Article  Google Scholar 

  6. J.-M. Lehn, A. Rigault: Helicates: Tetra- and pentanuclear double helix complexes of Cu(I) and poly(bipyridine) strands, Angew. Chem. Int. Ed. Engl. 27, 1095–1097 (1988)

    Article  Google Scholar 

  7. J.D. Hartgerink, J.R. Granja, R.A. Milligan, M.R. Ghadiri: Self-assembling peptide nanotubes, J. Am. Chem. Soc. 118, 43–50 (1996)

    Article  Google Scholar 

  8. M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich: Self-assembling organic nanotubes based on a cyclic peptide architecture, Nature 366, 324–327 (1993)

    Article  Google Scholar 

  9. V. Balzani, A. Credi, M. Venturi: Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley-VCH, Weinheim 2008)

    Book  Google Scholar 

  10. C.H. Hamann, A. Hamnett, W. Vielstich: Electrochemistry (Wiley-VCH, Weinheim 2007)

    Google Scholar 

  11. S. Fukuzumi: Electron Transfer: Mechanisms and Applications (Wiley-VCH, Weinheim 2016)

    Google Scholar 

  12. V. Balzani, P. Ceroni, A. Juris: Photochemistry and Photophysics: Concepts, Research, Applications (Wiley-VCH, Weinheim 2014)

    Google Scholar 

  13. N.J. Turro, J.C. Scaiano, V. Ramamurthy: Modern Molecular Photochemistry of Organic Molecules (University Science Books, Herndon 2010)

    Google Scholar 

  14. P.R. Ashton, R. Ballardini, V. Balzani, A. Credi, K.R. Dress, E. Ishow, C.J. Kleverlaan, O. Kocian, J.A. Preece, N. Spencer, J.F. Stoddart, M. Venturi, S. Wenger: A photochemically driven molecular-level abacus, Chem. Eur. J. 6, 3558–3574 (2000)

    Article  Google Scholar 

  15. B.L. Feringa, W.R. Browne (Eds.): Molecular Switches (Wiley-VCH, Weinheim 2011)

    Google Scholar 

  16. M. Irie, Y. Yokoyama, T. Seki (Eds.): New Frontiers in Photochromism (Springer, Tokyo 2013)

    Google Scholar 

  17. J.-P. Deschamps, E. Valderrama, L. Terés: Digital Systems: From Logic Gates to Processors (Springer, New York 2016)

    Google Scholar 

  18. D.R. Smith: Digital Transmission Systems (Springer, New York 2003)

    Google Scholar 

  19. O. Bishop: Electronics: Circuits and Systems (Routledge, Burlington 2011)

    Google Scholar 

  20. F.M. Raymo: Digital processing and communication with molecular switches, Adv. Mater. 14, 401–414 (2002)

    Article  Google Scholar 

  21. A.P. de Silva: Molecular computation – Molecular logic gets loaded, Nature Mater. 4, 15–16 (2005)

    Article  Google Scholar 

  22. A. Aviram: Molecules for memory, Logic Amplif, J. Am. Chem. Soc. 110, 5687–5692 (1988)

    Article  Google Scholar 

  23. A.P. de Silva, H.Q.N. Gunaratne, C.P. McCoy: A molecular photoionic AND gate based on fluorescent signaling, Nature 364, 42–44 (1993)

    Article  Google Scholar 

  24. M. Asakawa, P.R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O.A. Matthews, M. Montalti, N. Spencer, J.F. Stoddart, M. Venturi: Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading, Chem. Eur. J. 3, 1992–1996 (1997)

    Article  Google Scholar 

  25. F.M. Raymo, S. Giordani, A.J.P. White, D.J. Williams: Digital processing with a three-state molecular switch, J. Org. Chem. 68, 4158–4169 (2003)

    Article  Google Scholar 

  26. F.M. Raymo, S. Giordani: Signal communication between molecular switches, Org. Lett. 3, 3475–3478 (2001)

    Article  Google Scholar 

  27. F.M. Raymo, S. Giordani: Digital communication through intermolecular fluorescence modulation, Org. Lett. 3, 1833–1836 (2001)

    Article  Google Scholar 

  28. F.M. Raymo, S. Giordani: Multichannel digital transmission in an optical network of communicating molecules, J. Am. Chem. Soc. 124, 2004–2007 (2002)

    Article  Google Scholar 

  29. F.M. Raymo, S. Giordani: All-optical processing with molecular switches, Proc. Natl. Acad. Sci. USA 99, 4941–4944 (2002)

    Article  Google Scholar 

  30. J.C. Cuevas, E. Scheer: Molecular Electronics: An Introduction to Theory and Experiment (World Scientific Publishing, Singapore 2013)

    Google Scholar 

  31. C. Joachim, J.K. Gimzewski, A. Aviram: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000)

    Article  Google Scholar 

  32. J.M. Tour: Molecular electronics. Synthesis and testing of components, Acc. Chem. Res. 33, 791–804 (2000)

    Article  Google Scholar 

  33. A.R. Pease, J.O. Jeppesen, J.F. Stoddart, Y. Luo, C.P. Collier, J.R. Heath: Switching devices based on interlocked molecules, Acc. Chem. Res. 34, 433–444 (2001)

    Article  Google Scholar 

  34. R.M. Metzger: Unimoleular electrical rectifiers, Chem. Rev. 103, 3803–3834 (2003)

    Article  Google Scholar 

  35. W.A. Barlow (Ed.): Langmuir-Blodgett Films (North Holland, Amsterdam 2013)

    Google Scholar 

  36. Y.S. Lee: Self-Assembly and Nanotechnology Systems: Design, Characterization and Applications (Wiley, New York 2011)

    Book  Google Scholar 

  37. C. Lee, A.J. Bard: Comparative electrochemical studies of N-methyl- N’-hexadecyl viologen monomolecular films formed by irreversible adsorption and the Langmuir-Blodgett method, J. Electroanal. Chem. 239, 441–446 (1988)

    Article  Google Scholar 

  38. C. Lee, A.J. Bard: Cyclic voltammetry and Langmuir film isotherms of mixed monolayers of N-docosoyl- N’-methyl viologen with arachidic acid, Chem. Phys. Lett. 170, 57–60 (1990)

    Article  Google Scholar 

  39. M. Fujihira, K. Nishiyama, H. Yamada: Photoelectrochemical responses of optically transparent electrodes modified with Langmuir-Blodgett films consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules, Thin Solid Films 132, 77–82 (1985)

    Article  Google Scholar 

  40. M. Fujihira: Photoelectric conversion with Langmuir-Blodgett films. In: Nanostructures Based on Molecular Materials, ed. by W. Göpel, C. Ziegler (VCH, Weinheim 1992) pp. 27–46

    Google Scholar 

  41. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391–394 (1999)

    Article  Google Scholar 

  42. E.W. Wong, C.P. Collier, M. Belohradsky, F.M. Raymo, J.F. Stoddart, J.R. Heath: Fabrication and transport properties of single-molecule-thick electrochemical junctions, J. Am. Chem. Soc. 122, 5831–5840 (2000)

    Article  Google Scholar 

  43. M. Asakawa, P.R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig, M. Montalti, A.N. Shipway, N. Spencer, J.F. Stoddart, M.S. Tolley, M. Venturi, A.J.P. White, D.J. Williams: A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit, Angew. Chem. Int. Ed. 37, 333–337 (1998)

    Article  Google Scholar 

  44. V. Balzani, A. Credi, G. Mattersteig, O.A. Matthews, F.M. Raymo, J.F. Stoddart, M. Venturi, A.J.P. White, D.J. Williams: Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs, J. Org. Chem. 65, 1924–1936 (2000)

    Article  Google Scholar 

  45. M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A.R. Pease, F.M. Raymo, T. Shimizu, J.F. Stoddart: Current/voltage characteristics of monolayers of redox-switchable [2]catenanes on gold, Adv. Mater. 12, 1099–1102 (2000)

    Article  Google Scholar 

  46. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.R. Heath: A [2]catenane based solid-state electronically reconfigurable switch, Science 289, 1172–1175 (2000)

    Article  Google Scholar 

  47. C.P. Collier, J.O. Jeppesen, Y. Luo, J. Perkins, E.W. Wong, J.R. Heath, J.F. Stoddart: Molecular-based electronically switchable tunnel junction devices, J. Am. Chem. Soc. 123, 12632–12641 (2001)

    Article  Google Scholar 

  48. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour: Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552 (1999)

    Article  Google Scholar 

  49. M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour: Molecular random access memory cell, Appl. Phys. Lett. 78, 3735–3737 (2001)

    Article  Google Scholar 

  50. D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin: Redox-controlled multilayers of discrete gold particles: A novel electroactive nanomaterial, Adv. Mater. 9, 737–740 (1999)

    Article  Google Scholar 

  51. D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin: Diode-like electron transfer across nanostructured films containing a redox ligand, J. Mater. Chem. 10, 79–83 (2000)

    Article  Google Scholar 

  52. D.I. Gittins, D. Bethell, D.J. Schiffrin, R.J. Nichols: A nanometer-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67–69 (2000)

    Article  Google Scholar 

  53. A.N. Shipway, M. Lahav, I. Willner: Nanostructured gold colloid electrodes, Adv. Mater. 12, 993–998 (2000)

    Article  Google Scholar 

  54. A.N. Shipway, M. Lahav, R. Blonder, I. Willner: Bis-bipyridinium cyclophane receptor–Au nanoparticle superstructure for electrochemical sensing applications, Chem. Mater. 11, 13–15 (1999)

    Article  Google Scholar 

  55. M. Lahav, A.N. Shipway, I. Willner, M.B. Nielsen, J.F. Stoddart: An enlarged bis-bipyridinum cyclophane–Au nanoparticle superstructure for selective electrochemical sensing applications, J. Electroanal. Chem. 482, 217–221 (2000)

    Article  Google Scholar 

  56. R.E. Gillard, F.M. Raymo, J.F. Stoddart: Controlling self-assembly, Chem. Eur. J. 3, 1933–1940 (1997)

    Article  Google Scholar 

  57. F.M. Raymo, J.F. Stoddart: From supramolecular complexes to interlocked molecular compounds, Chemtracts – Org. Chem. 11, 491–511 (1998)

    Google Scholar 

  58. M. Lahav, T. Gabriel, A.N. Shipway, I. Willner: Assembly of a Zn(II)-porphyrin-bipyridinium dyad and Au-nanoparticle superstructures on conductive surfaces, J. Am. Chem. Soc. 121, 258–259 (1999)

    Article  Google Scholar 

  59. M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner, H. Durr, Y. Hu, S.H. Bossmann: Photoelectrochemistry with integrated photosensitizer-electron acceptor Au-nanoparticle arrays, J. Am. Chem. Soc. 122, 11480–11487 (2000)

    Article  Google Scholar 

  60. G. Will, S.N. Rao, D. Fitzmaurice: Heterosupramolecular optical write-read-erase device, J. Mater. Chem. 9, 2297–2299 (1999)

    Article  Google Scholar 

  61. A. Merrins, C. Kleverlann, G. Will, S.N. Rao, F. Scandola, D. Fitzmaurice: Time-resolved optical spectroscopy of heterosupramolecular assemblies based on nanostructured TiO2films modified by chemisorption of covalently linked ruthenium and viologen complex components, J. Phys. Chem. B 105, 2998–3004 (2001)

    Article  Google Scholar 

  62. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, P.L. McEuen: Nanomechanical oscillations in a single C60transistor, Nature 407, 57–60 (2000)

    Article  Google Scholar 

  63. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park: Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002)

    Article  Google Scholar 

  64. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, D.C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002)

    Article  Google Scholar 

  65. C.Z. Li, H.X. He, N.J. Tao: Quantized tunneling current in the metallic nanogaps formed by electrodeposition and etching, Appl. Phys. Lett. 77, 3995–3997 (2000)

    Article  Google Scholar 

  66. H. He, J. Zhu, N.J. Tao, L.A. Nagahara, I. Amlani, R. Tsui: A conducting polymer nanojunction switch, J. Am. Chem. Soc. 123, 7730–7731 (2001)

    Article  Google Scholar 

  67. A. Bogozi, O. Lam, H. He, C. Li, N.J. Tao, L.A. Nagahara, I. Amlani, R. Tsui: Molecular adsorption onto metallic quantum wires, J. Am. Chem. Soc. 123, 4585–4590 (2001)

    Article  Google Scholar 

  68. A. Bezryadin, C.N. Lau, M. Tinkham: Quantum suppression of superconductivity in ultrathin nanowires, Nature 404, 971–974 (2000)

    Article  Google Scholar 

  69. D. Porath, A. Bezryadin, S. de Vries, C. Dekker: Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638 (2000)

    Article  Google Scholar 

  70. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, E.E. Smalley, L.J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)

    Article  Google Scholar 

  71. A.F. Morpurgo, J. Kong, C.M. Marcus, H. Dai: Gate-controlled superconducting proximity effect in carbon nanotubes, Nature 286, 263–265 (1999)

    Google Scholar 

  72. J. Nygård, D.H. Cobden, P.E. Lindelof: Kondo physics in carbon nanotubes, Nature 408, 342–346 (2000)

    Article  Google Scholar 

  73. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry-Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)

    Article  Google Scholar 

  74. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)

    Google Scholar 

  75. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 94–97 (2000)

    Article  Google Scholar 

  76. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)

    Article  Google Scholar 

  77. M.C. Petty: Langmuir-Blodgett Films: An Introduction (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Raymo, F.M. (2017). Molecule-Based Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics