Skip to main content

Recognition, Sensors, and Responsive Switches

  • Chapter
  • First Online:
Helicene Chemistry

Abstract

Both the helicity and the π–conjugated structure of helicenes endow them with a wide range of potential applications in molecular recognition and fluorescent sensing, and the environmentally responsive switches, especially in the chiral recognition and chiroptical switches. Thus, chiral recognition of helicene crown ethers toward racemic amine salts, recognition of diacids by helicopodand, chiral recognition between the BINOL-modified Au nanoparticles and Helquat via donor–acceptor interactions, and chiral recognition between the helicene quinone radical anion and BINAPO were sequentially found. It was also found that stereoregular helical acetylenes with [6]helicene units as the pendants generated by Rh-catalyzed polymerization display the ability to adsorb one enantiomer preferentially in a racemic mixture solution. Moreover, 2,15-dihydroxyl[6]helicene as fluorescence sensor for chiral amines and aminoalcohols, diaza[4]helicenes with pyridine and amino moieties for pH-sensitive sensing, tetrahydro[5]helicene thioimide-based chemodosimeter for Hg2+, and a humidity sensor based on [6]helicene-derived imidazolium salt were also developed. Recently, a series of fast-responsive explosive sensors based on the polymerization of [5]helicenes were reported as well. Furthermore, helicenes and their derivatives can be applied in the design and development of various acid-base responsive switches, redox-responsive switches, photo-responsive switches, and chiroptical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isla H, Crassous J (2016) Helicene-based chiroptical switches. C R Chim 19(1–2):39–49

    Article  CAS  Google Scholar 

  2. Nakazaki M, Yamamoto K, Ikeda T, Kitsuki T, Okamoto Y (1983) Synthesis and chiral recognition of novel crown ethers incorporating helicene chiral centres. J Chem Soc, Chem Commun 14:787–788

    Article  Google Scholar 

  3. Yamamoto K, Ikeda T, Kitsuki T, Okamoto Y, Chikamatsu H, Nakazaki M (1990) Synthesis and chiral recognition of optically-active crown ethers incorporating a Helicene moiety as the chiral center. J Chem Soc, Perkin Trans 1(2):271–276

    Article  Google Scholar 

  4. Owens L, Thilgen C, Diederich F, Knobler CB (1993) A new helicopodand—molecular recognition of dicarboxylic-acids with high diastereoselectivity. Helv Chim Acta 76(8):2757–2774

    Article  CAS  Google Scholar 

  5. Kano K, Negi S, Takaoka R, Kamo H, Kitae T, Yamaguchi M, Okubo H, Hirama M (1997) Chiral recognition of tetrahelicene dicarboxylic acid by linear dextrins. Chem Lett 8:715–716

    Article  Google Scholar 

  6. Kano K, Negi S, Kamo H, Kitae T, Yamaguchi M, Okubo H, Hirama M (1998) Recognition of helicity by native cyclodextrins. Highly enantioselective complexation of tetrahelicene dicarboxylic acid with beta-cyclodextrin. Chem Lett 2:151–152

    Article  Google Scholar 

  7. Kano K, Kamo H, Negi S, Kitae T, Takaoka R, Yamaguchi M, Okubo H, Hirama M (1999) Chiral recognition of an anionic tetrahelicene by native cyclodextrins. Enantioselectivity dominated by location of a hydrophilic group of the guest in a cyclodextrin cavity. J Chem Soc, Perkin Trans 2(1):15–21

    Google Scholar 

  8. Balogh D, Zhang Z, Cecconello A, Vavra J, Severa L, Teply F, Willner I (2012) Helquat-Induced Chiroselective aggregation of Au NPs. Nano Lett 12(11):5835–5839

    Article  CAS  Google Scholar 

  9. Schweinfurth D, Zalibera M, Kathan M, Shen C, Mazzolini M, Trapp N, Crassous J, Gescheidt G, Diederich F (2014) Helicene quinones: Redox-Triggered chiroptical switching and chiral recognition of the semiquinone radical anion lithium salt by electron nuclear double resonance spectroscopy. J Am Chem Soc 136(37):13045–13052

    Article  CAS  Google Scholar 

  10. Anger E, Iida H, Yamaguchi T, Hayashi K, Kumano D, Crassous J, Vanthuyne N, Roussel C, Yashima E (2014) Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. Polym. Chem 5(17):4909–4914

    Article  CAS  Google Scholar 

  11. Miyagawa M, Arisawa M, Yamaguchi M (2015) Equilibrium shift induced by chiral nanoparticle precipitation in rhodium-catalyzed disulfide exchange reaction. Tetrahedron 71(30):4920–4926

    Article  CAS  Google Scholar 

  12. Weix DJ, Dreher SD, Katz TJ (2000) [5]HELOL phosphite: A helically grooved sensor of remote chirality. J Am Chem Soc 122(41):10027–10032

    Article  CAS  Google Scholar 

  13. Wang DZG, Katz TJ (2005) A [5]HELOL analogue that senses remote chirality in alcohols, phenols, amines, and carboxylic acids. J Org Chem 70(21):8497–8502

    Article  CAS  Google Scholar 

  14. Reetz MT, Sostmann S (2001) 2,15-dihydroxy-hexahelicene (HELIXOL): synthesis and use as an enantioselective fluorescent sensor. Tetrahedron 57(13):2515–2520

    Article  CAS  Google Scholar 

  15. Wallabregue A, Sherin P, Guin J, Besnard C, Vauthey E, Lacour J (2014) Modular synthesis of pH-Sensitive fluorescent Diaza[4]helicenes. Eur J Org Chem 29:6431–6438

    Article  Google Scholar 

  16. Li M, Li X-J, Lu H-Y, Chen C-F (2014) Tetrahydro[5]helicene thioimide-based fluorescent and chromogenic chemodosimeter for highly selective and sensitive detection of Hg2+. Sensors and Actuators B: Chem 202:583–587

    Article  CAS  Google Scholar 

  17. Storch J, Zadny J, Strasak T, Kubala M, Sykora J, Dusek M, Cirkva V, Matejka P, Krbal M, Vacek J (2015) Synthesis and characterization of a Helicene-Based Imidazolium salt and its application in organic molecular electronics. Chem Eur J 21(6):2343–2347

    Article  CAS  Google Scholar 

  18. Zhou L-L, Li M, Lu H-Y, Chen C-F (2016) Benzo[5]helicene-based conjugated polymers: synthesis, photophysical properties, and application for the detection of nitroaromatic explosives. Polym Chem 7(2):310–318

    Article  CAS  Google Scholar 

  19. Anger E, Srebro M, Vanthuyne N, Roussel C, Toupet L, Autschbach J, Reau R, Crassous J (2014) Helicene-grafted vinyl- and carbene-osmium complexes: an example of acid-base chiroptical switching. Chem Commun 50(22):2854–2856

    Article  CAS  Google Scholar 

  20. Saleh N, Moore B, Srebro M, Vanthuyne N, Toupet L, Williams JAG, Roussel C, Deol KK, Muller G, Autschbach J, Crassous J (2015) Acid/Base-triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes. Chem Eur J 21(4):1673–1681

    Article  CAS  Google Scholar 

  21. Reyes-Gutiérrez PE, Jirásek M, Severa L, Novotná P, Koval D, Sázelová P, Vávra J, Meyer A, Císařová I, Šaman D, Pohl R, Štĕpánek P, Slavíček P, Coe BJ, Hájek M, Kašička V, Urbanová M, Teplý F (2015) Functional helquats: helical cationic dyes with marked, switchable chiroptical properties in the visible region. Chem Commun 51(9):1583–1586

    Article  Google Scholar 

  22. Li M, Niu Y, Lu H-Y, Chen C-F (2015) Tetrahydro[5]helicene-based dye with remarkable and reversible acid/base stimulated fluorescence switching properties in solution and solid state. Dyes Pigm 120:184–189

    Article  CAS  Google Scholar 

  23. Nishida J, Suzuki T, Ohkita M, Tsuji T (2001) A redox switch based on dihydro[5]helicene: Drastic chiroptical response induced by reversible C-C bond making/breaking upon electron transfer. Angew Chem Int Ed 40(17):3251–3354

    Article  CAS  Google Scholar 

  24. Anger E, Srebro M, Vanthuyne N, Toupet L, Rigaut S, Roussel C, Autschbach J, Crassous J, Réau R (2012) Ruthenium-Vinylhelicenes: remote metal-based enhancement and redox switching of the chiroptical properties of a helicene core. J Am Chem Soc 134(38):15628–15631

    Article  CAS  Google Scholar 

  25. Srebro M, Anger E, Moore Ii B, Vanthuyne N, Roussel C, Réau R, Autschbach J, Crassous J (2015) Ruthenium-Grafted Vinylhelicenes: Chiroptical properties and redox switching. Chem Eur J 21(47):17100–17115

    Article  CAS  Google Scholar 

  26. Biet T, Fihey A, Cauchy T, Vanthuyne N, Roussel C, Crassous J, Avarvari N (2013) Ethylenedithio-Tetrathiafulvalene-Helicenes: electroactive helical precursors with switchable chiroptical properties. Chem Eur J 19(39):13160–13167

    Article  CAS  Google Scholar 

  27. Pospíšil L, Bednárová L, Štěpánek P, Slavíček P, Vávra J, Hromadová M, Dlouhá H, Tarábek J, Teplý F (2014) Intense chiroptical switching in a dicationic helicene-like derivative: exploration of a viologen-type redox manifold of a non-racemic helquat. J Am Chem Soc 136(31):10826–10829

    Article  Google Scholar 

  28. Menichetti S, Cecchi S, Procacci P, Innocenti M, Becucci L, Franco L, Viglianisi C (2015) Thia-bridged triarylamine heterohelicene radical cations as redox-driven molecular switches. Chem Commun (Camb) 51(57):11452–11454

    Article  CAS  Google Scholar 

  29. Murguly E, McDonald R, Branda NR (2000) Chiral discrimination in hydrogen-bonded [7]helicenes. Org Lett 2(20):3169–3172

    Article  CAS  Google Scholar 

  30. Norsten TB, Peters A, McDonald R, Wang MT, Branda NR (2001) Reversible [7]-thiahelicene formation using a 1,2-dithienylcyclopentene photochrome. J Am Chem Soc 123(30):7447–7448

    Article  CAS  Google Scholar 

  31. Wigglesworth TJ, Sud D, Norsten TB, Lekhi VS, Branda NR (2005) Chiral discrimination in photochromic helicenes. J Am Chem Soc 127(20):7272–7273

    Article  CAS  Google Scholar 

  32. Okuyama T, Tani Y, Miyake K, Yokoyama Y (2007) Chiral helicenoid diarylethene with large change in specific optical rotation by photochromism. J Org Chem 72(5):1634–1638

    Article  CAS  Google Scholar 

  33. Tani Y, Ubukata T, Yokoyama Y, Yokoyama Y (2007) Chiral helicenoid diarylethene with highly diastereoselective photocyclization. J Org Chem 72(5):1639–1644

    Article  CAS  Google Scholar 

  34. Moorthy JN, Mandal S, Mukhopadhyay A, Samanta S (2013) Helicity as a steric force: stabilization and helicity-dependent reversion of colored o-Quinonoid intermediates of helical chromenes. J Am Chem Soc 135(18):6872–6884

    Article  CAS  Google Scholar 

  35. Frigoli M, Marrot J, Gentili PL, Jacquemin D, Vagnini M, Pannacci D, Ortica F (2015) P-Type photochromism of new helical naphthopyrans: synthesis and photochemical, photophysical and theoretical study. Chem Phys Chem 16(11):2447–2458

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CF., Shen, Y. (2017). Recognition, Sensors, and Responsive Switches. In: Helicene Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53168-6_10

Download citation

Publish with us

Policies and ethics