Skip to main content

Prädation

  • Chapter
  • First Online:
Verhaltensbiologie
  • 10k Accesses

Zusammenfassung

Fressen und Gefressen-Werden sind eng miteinander verbunden. Im vorangehenden Kapitel wurde deutlich, dass Überleben entscheidend vom Zugang zu Nahrung abhängt. Da sich zahlreiche Tiere aber ganz oder teilweise von tierischer Nahrung ernähren, hat deren Fressverhalten drastische negative Konsequenzen für die Fitness der betroffenen Beute. Prädation und deren Vermeidung sind daher zentrale Aspekte der Überlebensstrategien aller Tiere. Das aus diesem Konflikt zwischen Räuber und Beute entspringende evolutionäre Wettrennen hat neben der sexuellen Selektion zu den vielfältigsten und spektakulärsten Anpassungen geführt, bei denen es sich in vielen Fällen um Verhaltensmerkmale handelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Annu Rev Ecol Syst 31:79−105

    Google Scholar 

  • Ajie B, Pintor L, Watters J, Kerby J, Hammond J, Sih A (2007) A framework for determining the fitness consequences of antipredator behavior. Behav Ecol 18:267−270

    Google Scholar 

  • Arenz CL, Leger DW (2000) Antipredator vigilance of juvenile and adult thirteenlined ground squirrels and the role of nutritional need. Anim Behav 59:535−541

    Google Scholar 

  • Barber JR, Conner WE (2007) Acoustic mimicry in a predator prey interaction. Proc Natl Acad Sci USA 104:9331−9334

    Google Scholar 

  • Bednekoff PA, Lima SL (1998) Randomness, chaos and confusion in the study of antipredator vigilance. Trends Ecol Evol 13:284−287

    Google Scholar 

  • Beldade P, Brakefield PM (2002) The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet 3:442−452

    Google Scholar 

  • Blumstein DT, Mari M, Daniel JC, Ardron JG, Griffin AS, Evans CS (2002) Olfactory predator recognition: wallabies may have to learn to be wary. Anim Conserv 5:87−93

    Google Scholar 

  • Boesch C (1994) Cooperative hunting in wild chimpanzees. Anim Behav 48:653−667

    Google Scholar 

  • Bond AB, Kamil AC (2002) Visual predators select for crypticity and polymorphism in virtual prey. Nature 415:609−613

    Google Scholar 

  • Broom M, Ruxton GD (2005) You can run – or you can hide: optimal strategies for cryptic prey against pursuit predators. Behav Ecol 16:534−540

    Google Scholar 

  • Caley MJ, Schluter D (2003) Predators favour mimicry in a tropical reef fish. Proc R Soc Lond B 270:667−672

    Google Scholar 

  • Caro TM (2009) Contrasting coloration in terrestrial mammals. Philos Trans R Soc Lond B 364:537−548

    Google Scholar 

  • Caro TM, Stankowich T (2010) The function of contrasting pelage markings in artiodactyls. Behav Ecol 21:78−84

    Google Scholar 

  • Caro TM, Graham CM, Stoner CJ, Vargas JK (2004) Adaptive significance of antipredator behaviour in artiodactyls. Anim Behav 67:205−228

    Google Scholar 

  • Cheney KL (2010) Multiple selective pressures apply to a coral reef fish mimic: a case of Batesian-aggressive mimicry. Proc R Soc Lond B 277:1849−1855

    Google Scholar 

  • Chivers DP, Mirza RS, Johnston JG (2002) Learned recognition of heterospecific alarm cues enhances survival during encounters with predators. Behaviour 139:929−938

    Google Scholar 

  • Clark R (2005) Pursuit-deterrent communication between prey animals and timber rattlesnakes (Crotalus horridus): the response of snakes to harassment displays. Behav Ecol Sociobiol 59:258−261

    Google Scholar 

  • Cooper WE Jr (2003) Shifted balance of risk and cost after autotomy affects use of cover, escape, activity, and foraging in the keeled earless lizard (Holbrookia propinqua). Behav Ecol Sociobiol 54:179−187

    Google Scholar 

  • Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194−201

    Google Scholar 

  • Creel S, Creel NM (1995) Communal hunting and pack size in African wild dogs, Lycaon pictus. Anim Behav 50:1325−1339

    Google Scholar 

  • Creel S, Macdonald DW (1995) Sociality, group size, and reproductive suppression among carnivores. Adv Stud Behav 24:203−257

    Google Scholar 

  • Creel S, Christianson D, Liley S, Winnie JA Jr (2007) Predation risk affects reproductive physiology and demography of elk. Science 315:960

    Google Scholar 

  • Curio E (1978) Adaptive significance of avian mobbing. 1. Teleonomic hypotheses and predictions. Z Tierpsychol 48:175−183

    Google Scholar 

  • Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS (2005) Disruptive coloration and background pattern matching. Nature 434:72−74

    Google Scholar 

  • Downes S, Shine R (1998) Sedentary snakes and gullible geckos: predator-prey coevolution in nocturnal rock-dwelling reptiles. Anim Behav 55:1373−1385

    Google Scholar 

  • Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64:13−33

    Google Scholar 

  • Exnerová A, Stys P, Fucíková E, Veselá S, Svádová K, Prokopová M, Jarosík V, Fuchs R, Landová E (2007) Avoidance of aposematic prey in European tits (Paridae): learned or innate? Behav Ecol 18:148−156

    Google Scholar 

  • Fernández-Juricic E, Kerr B, Bednekoff P, Stephens D (2004) When are two heads better than one? Visual perception and information transfer affect vigilance coordination in foraging groups. Behav Ecol 15:898−906

    Google Scholar 

  • Fichtel C (2004) Reciprocal recognition of sifaka (Propithecus verreauxi verreauxi) and redfronted lemur (Eulemur fulvus rufus) alarm calls. Anim Cogn 7:45−52

    Google Scholar 

  • Fichtel C (2007) Avoiding predators at night: antipredator strategies in red-tailed sportive lemurs (Lepilemur ruficaudatus). Am J Primatol 69:611−624

    Google Scholar 

  • Fichtel C, Kappeler PM (2002) Anti-predator behavior of group-living Malagasy primates: mixed evidence for a referential alarm call system. Behav Ecol Sociobiol 51:262−275

    Google Scholar 

  • Fichtel C, Kappeler PM (2011) Variation in the meaning of alarm calls in Coquerel’s and Verreaux’s sifakas (Propithecus coquereli, P. verreauxi). Int J Primatol 32:346−361

    Google Scholar 

  • Fischer J, Metz M, Cheney DL, Seyfarth RM (2001) Baboon responses to graded bark variants. Anim Behav 61:925−931

    Google Scholar 

  • Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon, Oxford

    Google Scholar 

  • Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313:831−833

    Google Scholar 

  • Friman V-P, Hiltunen T, Laakso J, Kaitala V (2008) Availability of prey resources drives evolution of predator-prey interaction. Proc R Soc Lond B 275:1625−1633

    Google Scholar 

  • Frommen JG, Hiermes M, Bakker TCM (2009) Disentangling the effects of group size and density on shoaling decisions of three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol 63:1141−1148

    Google Scholar 

  • Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E (2006) Early evolution of the venom system in lizards and snakes. Nature 439:584−588

    Google Scholar 

  • Furrer RD, Manser MB (2009) The evolution of urgency-based and functionally referential alarm calls in ground-dwelling species. Am Nat 173:400−410

    Google Scholar 

  • Geffeney S, Brodie ED Jr, Ruben PC, Brodie ED 3rd (2002) Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. Science 297:1336−1339

    Google Scholar 

  • Griesser M (2009) Mobbing calls signal predator category in a kin group-living bird species. Proc R Soc Lond B 276:2887−2892

    Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J theoret Biol 31:295−311

    Google Scholar 

  • Hartman EJ, Abrahams MV (2000) Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proc R Soc Lond B 267:571−575

    Google Scholar 

  • Hedenström A, Rosén M (2001) Predator versus prey: on aerial hunting and escape strategies in birds. Behav Ecol 12:150−156

    Google Scholar 

  • Heiling AM, Herberstein ME (2004) Predator-prey coevolution: Australian native bees avoid their spider predators. Biol Lett 271:S196−S198

    Google Scholar 

  • Hieber CS, Stimson RS, Boyle J, Uetz GW (2002) The spider and fly revisited: ploy-counterploy behavior in a unique predator-prey system. Behav Ecol Sociobiol 53:51−60

    Google Scholar 

  • Höner OP, Wachter B, East ML, Runyoro VA, Hofer H (2005) The effect of prey abundance and foraging tactics on the population dynamics of a social, territorial carnivore, the spotted hyena. Oikos 108:544−554

    Google Scholar 

  • Holdaway RN (1989) New Zealand’s pre-human avifauna and its vulnerability. New Zealand J Ecol 12:11−25

    Google Scholar 

  • Hollén LI, Bell MBV, Radford AN (2008) Cooperative sentinel calling? Foragers gain increased biomass intake. Curr Biol 18:576−579

    Google Scholar 

  • Hugie DM (2003) The waiting game: a ‘battle of waits’ between predator and prey. Behav Ecol 14:807−817

    Google Scholar 

  • Hurd CR (1996) Interspecific attraction to the mobbing calls of black-capped chickadees (Parus atricapillus). Behav Ecol Sociobiol 38:287−292

    Google Scholar 

  • Ims RA, Andreassen HP (2000) Spatial synchronization of vole population dynamics by predatory birds. Nature 408:194−196

    Google Scholar 

  • Kapan D (2001) Three-butterfly system provides a field test of Müllerian mimicry. Nature 409:338−340

    Google Scholar 

  • Kopp M, Tollrian R (2003) Reciprocal phenotypic plasticity in a predator-prey system: inducible offences against inducible defences? Ecol Lett 6:742−748

    Google Scholar 

  • Korpimäki E, Norrdahl K, Huitu O, Klemola T (2005) Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc R Soc Lond B 272:193−202

    Google Scholar 

  • Krama T, Krams I (2005) Cost of mobbing call to breeding pied flycatchers, Ficedula hypoleuca. Behav Ecol 16:37−40

    Google Scholar 

  • Lindström L, Alatalo RV, Lyytinen A, Mappes J (2001) Predator experience on cryptic prey affects the survival of conspicuous aposematic prey. Proc R Soc Lond B 268:357−361

    Google Scholar 

  • Lingle S (2001) Anti-predator strategies and grouping patterns in white-tailed deer and mule deer. Ethology 107:295−314

    Google Scholar 

  • Losos JB, Schoener TW, Spiller DA (2004) Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432:505−508

    Google Scholar 

  • Manser MB (1999) Response of foraging group members to sentinel calls in suricates, Suricata suricatta. Proc R Soc Lond B 266:1013−1019

    Google Scholar 

  • Manser MB (2001) The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proc R Soc Lond B 268:2315−2324

    Google Scholar 

  • Mateo JM (1996) The development of alarm-call response behaviour in free-living juvenile Belding’s ground squirrels. Anim Behav 52:489−505

    Google Scholar 

  • Merilaita S, Lind J (2005) Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc R Soc Lond B 272:665−670

    Google Scholar 

  • Miller L, Gutzke W (1999) The role of the vomeronasal organ of crotalines (Reptilia: Serpentines: Viperidae) in predator detection. Anim Behav 58:53−57

    Google Scholar 

  • Mizutani A, Chal JS, Srinivasan MV (2003) Motion camouflage in dragonflies. Nature 423:604

    Google Scholar 

  • Moritz RFA, Bürgin H (1987) Group response to alarm pheromones in social wasps and the honeybee. Ethology 76:15−26

    Google Scholar 

  • Packer C, Scheel D, Pusey AE (1990) Why lions form groups: food is not enough. Am Nat 136:1−19

    Google Scholar 

  • Parrish JK (1993) Comparison of the hunting behavior of four piscine predators attacking schooling prey. Ethology 95:233−246

    Google Scholar 

  • Pays O, Jarman P (2008) Does sex affect both individual and collective vigilance in social mammalian herbivores: the case of the eastern grey kangaroo? Behav Ecol Sociobiol 62:757−767

    Google Scholar 

  • Pays O, Renaud P, Loisel P, Petit M, Gerard J, Jarman P (2007) Prey synchronize their vigilant behaviour with other group members. Proc R Soc Lond B 274:1287−1291

    Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371−7374

    Google Scholar 

  • Prudic KL, Oliver JC (2008) Once a Batesian mimic, not always a Batesian mimic: mimic reverts back to ancestral phenotype when the model is absent. Proc R Soc Lond B 275:1125−1132

    Google Scholar 

  • Prudic KL, Skemp AK, Papaj DR (2006) Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav Ecol 18:41−46

    Google Scholar 

  • Pulliam HR, Pyke GH, Caraco T (1982) The scanning behavior of juncos: a gametheoretical approach. J theoret Biol 95:89−103

    Google Scholar 

  • Riipi M, Alatalo RV, Lindström L, Mappes J (2001) Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413:512−514

    Google Scholar 

  • Roberts G (1996) Why individual vigilance declines as group size increases. Anim Behav 51:1077−1086

    Google Scholar 

  • Rowland HM, Ihalainen E, Lilndström L, Mappes J, Speed MP (2007) Co-mimics have a mutualistic relationship despite unequal defences. Nature 448:64−67

    Google Scholar 

  • Ruxton GD, Lima SL (1997) Predator-induced breeding suppression and its consequences for predator-prey population dynamics. Proc R Soc Lond B 264:409−415

    Google Scholar 

  • Ruxton GD, Speed MP (2006) How can automimicry persist when predators can preferentially consume undefended mimics? Proc R Soc Lond B 273:373−378

    Google Scholar 

  • Sallan LC, Kammer TW, Ausich WI, Cook LA (2011) Persistent predator-prey dynamics revealed by mass extinction. Proc Natl Acad Sci USA 108:8335–8338

    Google Scholar 

  • Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175−6180

    Google Scholar 

  • Scannell J, Roberts G, Lazarus J (2001) Prey scan at random to evade observant predators. Proc R Soc Lond B 268:541−547

    Google Scholar 

  • Schoener TW, Spiller DA, Losos JB (2001) Predators increase the risk of catastrophic extinction of prey populations. Nature 412:183−186

    Google Scholar 

  • Searle KR, Stokes CJ, Gordon IJ (2008) When foraging and fear meet: using foraging hierarchies to inform assessments of landscapes of fear. Behav Ecol 19:475−482

    Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210:801−803

    Google Scholar 

  • Shelley EL, Blumstein DT (2005) The evolution of vocal alarm communication in rodents. Behav Ecol 16:169−177

    Google Scholar 

  • Sherman PW (1977) Nepotism and the evolution of alarm calls. Science 197:1246−1253

    Google Scholar 

  • Sherratt TN (2002) The coevolution of warning signals. Proc R Soc Lond B 269:741−746

    Google Scholar 

  • Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator-prey system. Nature 425:288−290

    Google Scholar 

  • Speed MP, Ruxton GD (2005) Aposematism: what should our starting point be? Proc R Soc Lond B 272:431−438

    Google Scholar 

  • Stenseth NC, Falck W, Bjørnstad ON, Krebs CJ (1997) Population regulation in snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx. Proc Natl Acad Sci USA 94:5147−5152

    Google Scholar 

  • Stevens M, Merilaita S (2009) Animal camouflage: current issues and new perspectives. Philos Trans R Soc Lond B 364:423−427

    Google Scholar 

  • Sword GA (1999) Density-dependent warning coloration. Nature 397:217

    Google Scholar 

  • Templeton CN, Greene E, Davis K (2005) Allometry of alarm calls: black-capped chickadees encode information about predator size. Science 308:1934−1937

    Google Scholar 

  • Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415:133

    Google Scholar 

  • Treves A, Drescher A, Ingrisano N (2001) Vigilance and aggregation in black howler monkeys (Alouatta pigra). Behav Ecol Sociobiol 50:90−95

    Google Scholar 

  • van Buskirk J (2000) The costs of an inducible defense in anuran larvae. Ecology 81:2813−2821

    Google Scholar 

  • van Schaik CP, van Noordwijk MA (1989) The special role of male Cebus monkeys in predation avoidance and its effect on group composition. Behav Ecol Sociobiol 24:265−276

    Google Scholar 

  • von Frisch K (1941) Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z vergl Physiol 29:46−145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kappeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, P. (2017). Prädation. In: Verhaltensbiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53145-7_6

Download citation

Publish with us

Policies and ethics