Skip to main content

Abstract

Battery separators are flat materials situated between the positive and negative electrodes of a battery cell. Their function is to prevent physical contact and, therefore, short circuits. At the same time, they must enable ions to be transported as freely as possible within the electrolyte between the electrodes. This is essential for charge equalization and the electrochemical cell to work. To achieve this, separators are usually porous flat designs filled with an electrolyte. The following chapters first set out the basic characteristics of separators and the current status of conventional separator technology. Then, new separator concepts will be outlined and a currently available separator technology and its characteristics will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Anderman M (2011) Status of Li-ion battery technology for automotive applications. SAE international vehicle battery summit. Advanced Automotive Batteries, Shanghai

    Google Scholar 

  2. Baldwin RS (2009) A review of state-of‐the‐art separator materials for advanced lithium‐based batteries for future aerospace missions. NASA/TM, S 215590

    Google Scholar 

  3. Barnett B, Sriramaulu S, Stringfellow R, Singh S, Ofer D, Oh B (2008) 25th International battery seminar and exhibit. Fort Lauderdale, Florida, USA

    Google Scholar 

  4. Choi S, LG Chem (2009) AABC

    Google Scholar 

  5. DuPont. Dupont energain separators for high performance lithium ion batteries. http://www2.dupont.com/Energy_Storage/en_US/products/products_energain.html. accessed on: 27 March 2012

  6. Fujikawa M, Suzuki K, Inoue K, Shimada M (2006) Patent no. US 11396646

    Google Scholar 

  7. Ganesh Venugopal JM (1999) Characterization of microporous separators for lithium‐ion batteries. J Power Sources 77:34 – 41

    Article  Google Scholar 

  8. Avicenne (2013) The worldwide Battery market 2012 – 2025. BATTERIES 2013, Nice, France.

    Google Scholar 

  9. INERIS – L’Institut National de l’EnviRonnement industriel et des RisqueS (2011) Approche de la maîtrise des risques spécifiques de la filière véhicules électriques – Analyse préliminaire des risques

    Google Scholar 

  10. Kritzer P (2006) Nonwoven support material for improved separators in Li‐polymer batteries. J Power Sources 161:1335 – 1340

    Article  Google Scholar 

  11. Lee S-Y, Park P-K, Kim J-H (2009) Patent no. WO 2009/066916 A2

    Google Scholar 

  12. Opel. Maximaler Einsatz fur Ihre Sicherheit.http://www.opel-ampera.com/index.php/aut/ampera/how_use/safetyaccessed on: 27 March 2012

  13. Orendorff CJ (2012) The role of separators in Li-ion cell safety. In: The electrochemical society interface summer 2012, pp. 61 – 65

    Google Scholar 

  14. Penth B, Hying C, Hörpel G, Schmidt F G (1998) Patent no. EP 0946270B1

    Google Scholar 

  15. Porous Materials. Excerpt from Porous Materials. http://www.pmiapp.com/products/capillary_flow_po rometer.html

  16. Roth M, Weber C, Berg M, Geiger S, Hirn K, Waschinski C, et al (2010) Patent no. 2012/019626 WO

    Google Scholar 

  17. Roth PE (2009) The 26th international battery seminar and exhibit. Abuse Response of HEV and PHEV materials and cells. Fort Lauderdale, Florida, USA

    Google Scholar 

  18. Roth M, Moertel R, Geiger S (2013) A new type of nonwoven separator. In: 5. Internationale Fachtagung Kraftwerkbatterie – Lösungen für automobil und energieversorgung

    Google Scholar 

  19. Schell W, Zhang Z (1999) Celgard separators for lithium batteries. In: IEEE (ed.) The 14th annual battery conference. Long Beach, California, pp. 161 – 169

    Google Scholar 

  20. Weber C, Roth M, Kritzer P, Wagner R, Scharfenberger G (2008) Patent no. EP 2 235 766 B1

    Google Scholar 

  21. Yu W‐C, Geiger M W (1999) Patent no. EP 0715364B1

    Google Scholar 

  22. Zhang PA (2004) Battery separators. Chem Rev 104:4419 – 4462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weber, C.J., Roth, M. (2018). Separators. In: Korthauer, R. (eds) Lithium-Ion Batteries: Basics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53071-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53071-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53069-6

  • Online ISBN: 978-3-662-53071-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics