Skip to main content

Next generation technologies

  • Chapter
  • First Online:
Lithium-Ion Batteries: Basics and Applications

Abstract

Rechargeable lithium-ion batteries have been continually developed since their introduction by Sony in 1991. Energy density is one of the key parameters for lithium-ion batteries. It was steadily increased by optimizing battery components such as electrode materials or electrolyte as well as by improving the cell construction technologies. The cell level progress during recent years is shown in Fig. 16.1. Both gravimetric (specific) and volumetric energy density were more than doubled.

The original version of this chapter was revised. The updated online version can be found at https://doi.org/10.1007/978-3-662-53071-9_33

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 June 2019

    No Header

Notes

  1. 1.

    The theoretical (gravimetric) energy density is the stored chemical energy based on the pure electrode materials’ mass.

  2. 2.

    Initially, the terms “cell” and “battery” had strictly different definitions. An electrochemical cell is the smallest battery unit and consists of anode, cathode, electrolyte, separator, current collector, and housing. As opposed to that, a battery consists of at least two cells connected in series or in parallel. A 12-V lead battery for instance is made of six 2-V cells. Nowadays however, a cell is often called battery also. The electrochemical processes do not differ from cell to battery and this is why the present Chapter does not differentiate between those two terms. Specifying the practical energy densities however calls for a differentiation. All practical energy density values (with the exception of lead batteries) in this Chapter refer to cells.

  3. 3.

    The polysulfide species Sn 2– that form at the cathode during discharging dissolve in the electrolyte there. A concentration gradient versus the anode develops, which causes the polysulfides to diffuse toward the anode. Step by step, the polysulfides are distributed in the electrolyte.

Bibliography

  1. Gesamt-Roadmap Energiespeicher für die Elektromobilität 2030, Fraunhofer-Institut für System und Innovationsforschung ISI, Karlsruhe, Dezember 2015

    Google Scholar 

  2. Herbert D, Ulam J (1962) Inventors; electric dry cells and storage batteries

    Google Scholar 

  3. Nole DA, Moss V, Cordova R (1970) Inventors; battery employing lithium-sulphur electrodes with nonaqueous electrolyte

    Google Scholar 

  4. Abraham KM (1981) Status of rechargeable positive electrodes for ambient-temperature lithium batteries. J Power Sources 7(1):1 − 43

    Article  MathSciNet  Google Scholar 

  5. Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical-behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1−3):129 − 134

    Article  Google Scholar 

  6. Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to hig-performance rechargeable batteries. Solid State Ionics 175(1 – 4):243 – 245

    Article  Google Scholar 

  7. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A76 − A1969

    Article  Google Scholar 

  8. Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H et al (2012) In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134(14):6337 – 6343

    Article  Google Scholar 

  9. Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117 – 120

    Article  Google Scholar 

  10. Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium-sulfur cell. J Electrochem Soc 155(8):A576 − A582

    Article  Google Scholar 

  11. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500 – 506

    Article  Google Scholar 

  12. Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novak P (2012) Influence of different electrode compositions and binder materials on the performance of lithium-sulfur batteries. J Power Sources 205:420 – 425

    Article  Google Scholar 

  13. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery – II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800 – A805

    Article  Google Scholar 

  14. Kang SH, Zhao X, Manuel J, Ahn HJ, Kim KW, Cho KK, Ahn JH (2014) Effect of sulfur loading on energy density of lithium sulfur batteries. PSSA 211(8):1895–1899

    Google Scholar 

  15. Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources 264:30–34

    Article  Google Scholar 

  16. Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium-sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87

    Article  Google Scholar 

  17. Cleaver T, Kovacik P, Marinescu M, Zhang T, Offer G (2018) Perspective—commercializing lithium sulfur batteries: are we doing the right research? J Electrochem Soc 165(1):A6029–A6033

    Article  Google Scholar 

  18. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J, Beilstein J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. J Nanotechnol 6:1016–1055

    Google Scholar 

  19. Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie Int Edition 49(13):2371 – 2374

    Article  Google Scholar 

  20. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694 – A702

    Article  Google Scholar 

  21. Jozwiuk A, Sommer H, Janek J, Brezesinski T (2015) Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings – simple design competes with complex cathode architecture. J Power Sources 296:454–461

    Article  Google Scholar 

  22. Medenbach L, Adelhelm P (2017) Cell concepts of metal-sulfur batteries (Metal = Li, Na, K, Mg): strategies for using sulfur in energy storage applications. Top Curr Chem 375(5):81

    Article  Google Scholar 

  23. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries. Angewandte Chemie. 125(29):7608 – 11

    Article  Google Scholar 

  24. Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 6(5):1552 – 8

    Article  Google Scholar 

  25. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

    Article  Google Scholar 

  26. Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82

    Article  Google Scholar 

  27. Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558

    Article  Google Scholar 

  28. Fu Y, Su YS, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Edit 52(27):6930–6935

    Article  Google Scholar 

  29. Hassoun J, Scrosati B (2010) Moving to a solid‐state configuration: a valid approach to making lithium‐sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201

    Article  Google Scholar 

  30. Nagata H, Chikusa Y (2014) A lithium sulfur battery with high power density. J Power Sources 264:206–210

    Article  Google Scholar 

  31. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055

    Article  Google Scholar 

  32. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1 – 5

    Article  Google Scholar 

  33. Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190 – A1195

    Article  Google Scholar 

  34. Sawyer DT, Valentine JS (1981) How super is superoxide. Acc Chem Res 14(12):393 − 400

    Article  Google Scholar 

  35. Aurbach D, Daroux M, Faguy P, Yeager E (1991) The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J Electroanal Chem 297(1):225 – 244

    Article  Google Scholar 

  36. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochem 78(5):403 – 405

    Article  Google Scholar 

  37. Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F et al (2011) Reactions in the rechargeable Li-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040 – 8047

    Article  Google Scholar 

  38. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038 – 18041

    Article  Google Scholar 

  39. Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A Reversible and Higher-Rate Li-O2 Battery. Science. 337(6094):563 – 6.

    Article  Google Scholar 

  40. Chase GV, Zecevic S, Walker W, Uddin J, Sasaki KA, Giordani V, Bryantsev V, Blanco M, Addison D (2011) US Patent Application No 20120028137 A1 2011

    Google Scholar 

  41. Hase Y, Shiga T, Nakano M, Takechi K, Setoyama N (2009) US Patent Application No US 2009/0239113 A1 2009

    Google Scholar 

  42. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494

    Article  Google Scholar 

  43. Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman R, Kang K (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed Engl 53(15):3926–3931

    Article  Google Scholar 

  44. Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064

    Article  Google Scholar 

  45. Feng N, Mu X, Zhang X, He P, Zhou H (2017) Intensive study on the catalytical behavior of N-methylphenothiazine as a coluble mediator to oxidize the Li2O2 cathode of the Li–O2 battery. ACS Appl Mater Interfaces 9(4):3733–3739

    Article  Google Scholar 

  46. Liang Z, Lu YC (2016) Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J Am Chem Soc 138(24):7574–7583

    Article  Google Scholar 

  47. Aetukuri NB, McCloskey BD, Garcia JM, Krupp LE, Viswanathan V, Luntz AC (2015) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56

    Article  Google Scholar 

  48. Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid-State Lett 15(4):A45–A48

    Article  Google Scholar 

  49. Schwenke KU, Metzger M, Restle T, Piana M, Gasteiger HA (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162(4):A573–A584

    Article  Google Scholar 

  50. Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H (2015) The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat Commun 6:7843

    Article  Google Scholar 

  51. Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501

    Article  Google Scholar 

  52. Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228 – 232

    Article  Google Scholar 

  53. http://www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500.html

  54. de Jonghe LC et al (2007) inventors; protected active metal electrode and battery cell structures with non-aqueous interlayer architecture

    Google Scholar 

  55. Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719

    Article  Google Scholar 

  56. Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 156(8):A694 − A702

    Article  Google Scholar 

  57. Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics.69(3 – 4):173 – 183

    Article  Google Scholar 

  58. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396 – A404

    Article  Google Scholar 

  59. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436.

    Article  Google Scholar 

  60. Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456.

    Article  Google Scholar 

  61. Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4.

    Google Scholar 

  62. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6.

    Google Scholar 

  63. Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402.

    Article  Google Scholar 

  64. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486 – 1491

    Article  Google Scholar 

  65. Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21 – 24

    Article  Google Scholar 

  66. Handbook of Solid State Batteries, 2nd ed., Dudney N J, West W C, Nanda J (Eds.), World Scientific 2015

    Google Scholar 

  67. Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1(9):16141

    Google Scholar 

  68. Luntz A C, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6:4599–4604

    Article  Google Scholar 

  69. Robinson A L, Janek J (2014) Solid-state batteries enter EV fray. MRS Bulletin 39:1046

    Article  Google Scholar 

  70. Kato, Y. et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    Google Scholar 

  71. Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28:2634–2640

    Google Scholar 

  72. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    Google Scholar 

  73. Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177:2715–2720

    Article  Google Scholar 

  74. Wenzel S, Weber D, Leichtweiss T, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33

    Article  Google Scholar 

  75. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interface 7:23685–23693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Janek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janek, J., Adelhelm, P. (2018). Next generation technologies. In: Korthauer, R. (eds) Lithium-Ion Batteries: Basics and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53071-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53071-9_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53069-6

  • Online ISBN: 978-3-662-53071-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics