Skip to main content

Types from Frames as Finite Automata

  • Conference paper
  • First Online:
Formal Grammar (FG 2015, FG 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9804))

Abstract

An approach to frame semantics is built on a conception of frames as finite automata, observed through the strings they accept. An institution (in the sense of Goguen and Burstall) is formed where these strings can be refined or coarsened to picture processes at various bounded granularities, with transitions given by Brzozowski derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This introductory section presupposes some familiarity with the literature, but is followed by sections that proceed in a more careful manner, without relying on a full understanding of the Introduction.

  2. 2.

    The compatibility here becomes obvious if the moves described in footnote 5 of page 281 in Kallmeyer and Osswald (2013) are made, and a root added with attributes to the multiple base nodes.

  3. 3.

    Readers familiar with bisimulations will note that \(\sim \) is the largest bisimulation (determinism being an extreme form of image-finiteness; Hennessy and Milner 1985).

  4. 4.

    \({ Nom}_\mathsf{{A}}(\varphi )\) does the work of the scheme (Nom \(_N\)) for nominals given in Blackburn (1993), just as \({ Tml}_\mathsf{{A}}(a)\) is analogous to the scheme (Term) there for instantiating atomic information at terminal nodes.

  5. 5.

    By contrast, for a language q over \(\mathsf{{A}}\), all formulas in the set

    $$\begin{aligned} \{\Box (\langle a_q\rangle \top \supset (\langle s\rangle \top \wedge \lnot \langle s'\rangle \top )) \ | \ s\in q \text{ and } s'\in \mathsf{{A}}^*-q\} \end{aligned}$$

    must be satisfied for \(a_q\) to mark q.

  6. 6.

    That said, we might refine \(\mathbf{Sign}\), requiring of a signature \((\varSigma ,q)\) that q be a regular language. For this, it suffices to replace \(\int Q\) by \(\int R\) where \(R:{ Fin}({\mathsf{{A}}})^{op} \rightarrow \mathbf{Cat}\) is the subfunctor of Q such that \(R(\varSigma )\) is the full subcategory of \(Q(\varSigma )\) with objects regular languages. We can make this refinement without requiring that \(\varSigma \)-states in \({ Mod}(\varSigma ,q)\) be regular, forming \({ Mod}(\varSigma ,q)\) from Q (not R).

  7. 7.

    This is formulated as an institution in Fernando (2014).

References

  • Barsalou, L.: Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999)

    Google Scholar 

  • Blackburn, P.: Modal logic and attribute value structures. In: de Rijke, M. (ed.) Diamonds and Defaults. Synthese Library, vol. 229, pp. 19–65. Springer, Netherlands (1993)

    Chapter  Google Scholar 

  • Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  • Cooper, R.: Type theory and semantics in flux. In: Philosophy of Linguistics, pp. 271–323. North-Holland (2012)

    Google Scholar 

  • Cooper, R., Ranta, A.: Natural languages as collections of resources. In: Language in Flux: Dialogue Coordination, Language Variation, Change and Evolution, pp. 109–120. College Publications, London (2008)

    Google Scholar 

  • Davidson, D.: The logical form of action sentences. In: The Logic of Decision and Action, pp. 81–95. University of Pittsburgh Press (1967)

    Google Scholar 

  • Fernando, T.: Incremental semantic scales by strings. In: Proceedings of EACL 2014 Workshop on Type Theory and Natural Language Semantics, pp. 63–71. ACL (2014)

    Google Scholar 

  • Fernando, T.: The semantics of tense and aspect: a finite-state perspective. In: Lappin, S., Fox, C. (eds.) The Handbook of Contemporary Semantic Theory, 2nd edn. Wiley, New York (2015)

    Google Scholar 

  • Fillmore, C.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137. Hanshin Publishing Co., Seoul (1982)

    Google Scholar 

  • Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM 32(1), 137–161 (1985)

    Article  MATH  Google Scholar 

  • Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  • Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexicalized tree adjoining grammars. J. Lang. Model. 1(2), 267–330 (2013)

    Article  Google Scholar 

  • Löbner, S.: Evidence for frames from human language. In: Gamerschlag, T., Gerland, D., Osswald, R., Petersen, W. (eds.) Frames and Concept Types. Studies in Linguistics and Philosophy, vol. 94, pp. 23–67. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  • Muskens, R.: Data semantics and linguistic semantics. In: The Dynamic, Inquisitive, and Visionary Life of \(\phi , ?\phi \), and \(\Diamond \phi \): A Festschrift for Jeroen Groenendijk, Martin Stokhof, and Frank Veltman, pp. 175–183. Amsterdam (2013)

    Google Scholar 

  • Osswald, R.: Semantics for attribute-value theories. In: Proceedings of Twelfth Amsterdam Colloquium, pp. 199–204. Amsterdam (1999)

    Google Scholar 

  • Petersen, W., Osswald, T.: Concept composition in frames: focusing on genitive constructions. In: Gamerschlag, T., Gerland, D., Osswald, R., Petersen, W. (eds.) Frames and Concept Types. Studies in Linguistics and Philosophy, vol. 94, pp. 243–266. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  • Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Tarlecki, A., Burstall, R., Goguen, J.: Some fundamental algebraic tools for the semantics of computation: Part 3. indexed categories. Theoret. Comput. Sci. 91(2), 239–264 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Veltman, F.: Logics for conditionals. Ph.D. dissertation, University of Amsterdam (1985)

    Google Scholar 

Download references

Acknowledgements

My thanks to Robin Cooper for discussions, to Glyn Morrill for help with presenting this paper at Formal Grammar 2015, and to two referees for comments and questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fernando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernando, T. (2016). Types from Frames as Finite Automata. In: Foret, A., Morrill, G., Muskens, R., Osswald, R., Pogodalla, S. (eds) Formal Grammar. FG FG 2015 2016. Lecture Notes in Computer Science(), vol 9804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53042-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53042-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53041-2

  • Online ISBN: 978-3-662-53042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics