Skip to main content

Contributions of LA-ICP-MS to Obsidian Sourcing in the Pacific

  • Chapter
  • First Online:
Recent Advances in Laser Ablation ICP-MS for Archaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 830 Accesses

Abstract

This chapter examines results from the application of LA-ICP-MS to the identification of sources of obsidian artifacts from the Western Pacific. More than 700 analyses of obsidian samples collected at the Australian National University over the past years provide an accurate geochemical dataset for major obsidian source regions in the Western Pacific unambiguously discriminating sources and sub-sources. This dataset is employed to analyze social interaction in the 3000-year timeframe of human occupation of the western Pacific as reflected by variations in lithic raw material sources. Albeit not non-destructive, the minimal sample size necessary, and the precision and accuracy of analysis for a wide range of major, minor, trace and rare earth elements enables LA-ICP-MS to not only geochemically fingerprint archaeological artifacts to known source locations, but also to provide information about general geological contexts from which these objects derived. These additional data have been successfully employed in the past to identify locations of high probability for undetected obsidian outcrops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The numerous obsidian sources in New Zealand are excluded from this analysis, because of the late colonisation of the island and the limited transportation of New Zealand obsidian into the central and western Pacific.

  2. 2.

    Large-ion lithophile elements (LILEs) and high-field-strength elements (HFSEs) are two categories of elements in geochemistry. Both groups have the tendency to stay in liquid phase during fractionation process in the melt. They are classified by the ratio of their electrostatic potential to their ionic radius, which is informative about the origin of rocks, e.g. abundance of LILEs would indicate continental crusts (Albarède 2003:18).

References

  • Acquafredda P, Paglionico A (2004) SEM-EDS microanalysis of microphenocrysts of Mediterranean obsidians: a preliminary approach to source discrimination. Eur J Miner 16:419–429

    Article  Google Scholar 

  • Albarède F (2003) Geochemistry: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ambrose WR (1976) Obsidian and its prehistoric distribution in Melanesia. In: Barnard N (ed) Ancient Chinese bronzes and South East Asian metal and other archaeological artifacts. National Gallery of Victoria, Melbourne, pp 351–378

    Google Scholar 

  • Ambrose WR, Duerden P (1982) PIXE analysis in the distribution and chronology of obsidian use in the Admiralty Islands. In: Ambrose WR, Duerden P (eds) Archaeometry: an Australasian perspective. Occasional papers in prehistory. RSPAS and ANU, Canberra, p 83–89

    Google Scholar 

  • Ambrose WR, Johnson RW (1986) Unea: an Obsidian non-source in Papua New Guinea. J Polynesian Soc 95:491–497

    Google Scholar 

  • Ambrose WR, Bird JR, Duerden P (1981a) The impermanence of obsidian sources in Melanesia. In: Leach BF, Davidson J (eds) Archaeological studies of Pacific stone resources. British Archaeological Reports: International Series, Oxford, pp 1–19

    Google Scholar 

  • Ambrose WR, Duerden P, Bird JR (1981b) An archaeological Application of PIXE-PIGME analysis to Admiralty Islands obsidians. Nucl Instrum Method 191:397–402

    Article  Google Scholar 

  • Ambrose WR, Allen C, O’Connor S, Spriggs M, Oliveira NV, Reepmeyer C (2009) Possible obsidian sources for artefacts from Timor: narrowing the options using chemical data. J Archaeol Sci 36:607–615

    Article  Google Scholar 

  • Araho N, Torrence R, White JP (2002) Valuable and useful: mid-Holocene stemmed obsidian artefacts from West New Britain, Papua New Guinea. Proc Prehist Soc 68:61–81

    Article  Google Scholar 

  • Barsdell M, Smith IEM, Spoerli KB (1982) The origin of reversed geochemical zoning in the Northern New Hebrides volcanic arc. Contrib Mineral Petr 81:148–155

    Article  Google Scholar 

  • Baxter MJ, Cool HEM, Jackson CM (2006) Comparing glass compositional analyses. Archaeometry 48:399–414

    Article  Google Scholar 

  • Bellwood P, Koon P (1989) Lapita colonists leave boats unburned! The questions of Lapita links with Island South East Asia. Antiquity 63:613–622

    Article  Google Scholar 

  • Bird JR (1996) Pacific Obsidian Studies, Unpublished Report. ANSTO, Sydney

    Google Scholar 

  • Bird JR, Ambrose WR, Russell LH, Scott MD (1981a) The characterisation of Melanesian obsidian sources and artefacts using the proton induced gamma ray emission (PIGME) technique, AAEC/E510. Australian Atomic Energy Commission, Lucas Heights (NSW)

    Google Scholar 

  • Bird JR, Duerden P, Ambrose WR, Leach BF (1981b) Pacific obsidian catalogue. In: Leach BF (ed) Lithic resources of the Pacific Region, vol 104. British Archaeological Reports International Series (BAR), Oxford, pp 31–43

    Google Scholar 

  • Bird JR, Torrence R, Summerhayes GR, Bailey G (1997) New Britain obsidian sources. Archaeol Ocean 32:61–67

    Article  Google Scholar 

  • Chayes F (1964) A petrographic distinction between Cenozoic volcanics in and around the open oceans. J Geophys Res 69:1573–1588

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Longman Scientific & Technical/Wiley, New York, NY

    Google Scholar 

  • Duerden P, Clayton E, Bird JR, Ambrose WR, Leach BF (1987) Obsidian composition catalogue. In: Ambrose WR, Mummery JMJ (eds) Archaeometry: further Australasian studies. Occasional papers in prehistory. RSPAS and ANU, Canberra, pp 232–238

    Google Scholar 

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127:278–286

    Article  Google Scholar 

  • Falkner KK, Klinkhammer GP, Ungerer CA, Christie DM (1995) Inductively coupled plasma mass spectrometry in geochemistry. Annu Rev Earth Pl Sci 23:409–449

    Article  Google Scholar 

  • Fullagar R (1992) Lithically Lapita. Functional analysis of flaked stone assemblages from West New Britain Province, Papua New Guinea. In: Galipaud J-C (ed) Poterie Lapita et Peuplement. ORSTOM, Noumea, pp 135–143

    Google Scholar 

  • Fullagar R (1993) Flaked stone tools and plant food production: a preliminary report on obsidian tools from Talasea, West New Britain, PNG. In: Anderson PC, Beyries S, Otte M, Plisson H (eds) Traces et Fonction: Les gestes retrouvés. ERAUL, Liège, pp 331–337

    Google Scholar 

  • Fullagar R, Ambrose WR, Bird JR, Specht J, Torrence R (1989) Stocktaking the rocks: obsidian sources in West New Britain, Papua New Guinea. Proceedings of the AINSE conference on nuclear techniques of analysis, p 187–189

    Google Scholar 

  • Fullagar R, Ivuyo B, Specht J, Summerhayes GR (1991) Obsidian sources at Mopir, West New Britain Province, Papua New Guinea. Archaeol Ocean 26:110–114

    Article  Google Scholar 

  • Goffer Z (2007) Archaeological chemistry. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists, 2nd edn. Plenum Press, New York, NY

    Book  Google Scholar 

  • Golitko M, Meierhoff J, Terrell JE (2010) Chemical characterization of sources of obsidian from the Sepik coast (PNG). Archaeol Ocean 45:120–129

    Article  Google Scholar 

  • Gratuze B, Blet-Lemarquand M, Barrandon J-N (2001) Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. J Radioanal Nucl Chem 247:645–656

    Article  Google Scholar 

  • Green RC (1987) Obsidian results from the Lapita sites of the Reef/Santa Cruz Islands. In: Ambrose WR, Mummery JMJ (eds) Archaeometry: further Australasian studies. Occasional papers in prehistory. RSPAS and ANU, Canberra, pp 239–249

    Google Scholar 

  • Green RC, Bird JR (1989) Fergusson Island obsidian from the D’Entrecasteaux group in a Lapita site of the Reef Santa Cruz group. NZ J Archaeol 11:87–99

    Google Scholar 

  • Juggins S (2005) C2 data analysis, 1.4.2 edn. University of Newcastle, Newcastle

    Google Scholar 

  • Kayani PI, McDonnell G (1996) An assessment of back-scattered electron petrography as a method for distinguishing Mediterranean obsidians. Archaeometry 38:43–58

    Article  Google Scholar 

  • Kirch PV (1988) Long-distance exchange and Island colonization: the Lapita case. Nor Archaeol Rev 21:103–117

    Article  Google Scholar 

  • Kononenko NA (2012) Middle and late Holocene skin-working tools in Melanesia: tattooing and scarification? Archaeol Ocean 47:14–28

    Article  Google Scholar 

  • Kononenko NA, Bedford S, Reepmeyer C (2010) Functional analysis of late Holocene flaked and pebble stone artefacts from Vanuatu, Southwest Pacific. Archaeol Ocean 45:13–20

    Article  Google Scholar 

  • Leach BF, Davidson J (1981) Archaeological studies of Pacific stone resources. British Archaeological Reports: International Series, Oxford

    Google Scholar 

  • Leach BF, Manly B (1982) Minimum Mahalanobis distance functions and lithic source characterisation by multi-element analysis. NZ J Archaeol 4:77–109

    Google Scholar 

  • Lee YI, Sneddon J (1994) Direct and rapid determination of potassium in standard solid glasses by excimer laser ablation plasma atomic emission spectrometry. Analyst 119:1441–1443

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectrom 11:899–904

    Article  Google Scholar 

  • MacIntyre M (1983) Changing paths: a historical ethnology of the traders of Tubetube. Research School of Pacific Studies, Australian National University, Canberra

    Google Scholar 

  • Pollard M, Batt C, Stern B, Young SMM (2007) Analytical chemistry in archaeology. Manuals in Archaeology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raos AM, Crawford AJ (2004) Basalts from the Efate Island Group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis. J Volcanol Geotherm Res 134:35–56

    Article  Google Scholar 

  • Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy in geology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reepmeyer C (2008) Characterising volcanic glass sources in the Banks Islands, Vanuatu. Archaeol Ocean 43:120–127

    Article  Google Scholar 

  • Reepmeyer C (2009) Obsidian sources and distribution systems emanating from Gaua and Vanua Lava on the Banks Islands of Vanuatu. Ph.D Dissertation, Australian National University

    Google Scholar 

  • Reepmeyer C, Clark GR (2010) Post-colonization interaction between Vanuatu and Fiji reconsidered: the reanalysis of obsidian from Lakeba Island, Fiji. Archaeometry 52:1–18

    Article  Google Scholar 

  • Reepmeyer C, Clark GR, Sheppard PJ (2012) Obsidian source use in Tongan prehistory: new results and implications. J Island Coastal Archaeol 7:255–271

    Article  Google Scholar 

  • Rothe P (2005) Gesteine: Entstehung, Zerstörung, Umbildung, 2nd edn. Primus Verlag, Darmstadt

    Google Scholar 

  • Sheppard PJ (1993) Lapita lithics: trade/exchange and technology. A view from the Reefs/Santa Cruz. Archaeol Ocean 28:121–137

    Article  Google Scholar 

  • Sheppard PJ, Hancock RGV, Pavlish LA, Parker R (1989) Samoan volcanic glass. Archaeol Ocean 24:70–74

    Article  Google Scholar 

  • Smith IEM (1974) Obsidian sources in Papua-New Guinea. Archaeol Phys Anthropol Ocean 9:18–25

    Google Scholar 

  • Smith IEM, Price RC (2006) The Tonga-Kermadec arc and Havre-Lau back-arc system: their role in the development of tectonisc and magmatic models for the western Pacific. J Volcanol Geotherm Res 156:315–331

    Article  Google Scholar 

  • Smith IEM, Ward GK, Ambrose WR (1977) Geographic distribution and the characterization of volcanic glasses in Oceania. Archaeol Ocean 12:173–201

    Google Scholar 

  • Smith IEM, Steward RB, Price RC (2003) The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. J Volcanol Geotherm Res 124:173–194

    Article  Google Scholar 

  • Specht J (2002) Obsidian, colonising and exchange. In: Bedford S, Sand C, Burley D (eds) Fifty years in the field: essays in honour and celebration of Richard Shutler Jr’s Archaeological career. New Zealand Archaeological Association Monograph, Auckland, pp 37–49

    Google Scholar 

  • Specht J, Koettig M (1981) An obsidian flaking area near Talasea, West New Britain, Papua New Guinea. Archaeol Ocean 16:168–172

    Article  Google Scholar 

  • SPSS (2006) SPSS for Windows, 16.0 edition. SPSS, Chicago, IL

    Google Scholar 

  • Summerhayes GR (2004) The nature of prehistoric obsidian importation to Anir and the development of a 3,000 year old regional picture of obsidian exchange within the Bismarck Archipelago, Papua New Guinea. Records of the Australian Museum 29(Suppl):145–156

    Article  Google Scholar 

  • Summerhayes GR (2009) Obsidian network patterns in Melanesia – sources, characterisation and distribution. Bull Indo Pac Pre Hist Assoc 29:109–124

    Google Scholar 

  • Summerhayes GR, Allen J (1993) The transport of Mopir obsidian to late Pleistocene New Ireland. Archaeol Ocean 28:144–148

    Article  Google Scholar 

  • Summerhayes GR, Bird JR, Fullagar R, Gosden C, Specht J, Torrence R (1998) Application of PIXE-PIGME to archaeological analysis of changing patterns of obsidian use in West New Britain, Papua New Guinea. In: Shackley MS (ed) Archaeological obsidian studies: method and theory. Plenum Press, New York, NY, pp 129–158

    Chapter  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, geological society special publications. Blackwell, Oxford, pp 313–345

    Google Scholar 

  • Torrence R (2004) Pre-Lapita valuables in Island Melanesia. Records of the Australian Museum 29(Suppl):163–172

    Article  Google Scholar 

  • Torrence R (2005) Valued stone – how so? In: Macfarlane I, Mountain M-J, Paton R (eds) Many exchanges: archaeology, history, community and the work of Isabel McBryde. Aboriginal History Monograph, Canberra, pp 357–372

    Google Scholar 

  • Torrence R (2011) Finding the right question: learning from stone tools on the Willaumez Penisula, Papua New Guinea. Archaeol Ocean 46:29–41

    Article  Google Scholar 

  • Torrence R, Specht J, Fullagar R, Bird JR (1992) From pleistocene to present: obsidian sources in West New Britain, Papua New Guinea. Records of the Australian Museum 15(Suppl):83–98

    Article  Google Scholar 

  • Torrence R, Specht J, Fullagar R, Summerhayes GR (1996) Which obsidian is worth it? In: Davidson J, Irwin G, Leach BF, Pawley A, Brown D (eds) Oceanic culture history: essays in honour of Roger Green. New Zealand Journal of Archaeology Special Publication, Dunedin, pp 211–224

    Google Scholar 

  • Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Martini M, Milazzo M, Piacentini M (eds) Proceedings of the International School of Physics “Enrico Fermi” course CLIV. IOS Press, Amsterdam, pp 407–432

    Google Scholar 

  • Vinx R (2005) Gesteinsbestimmung im Gelände. Spektrum Akademischer Verlag, Munich

    Google Scholar 

  • Wall T (1976) Use of the research reactor Moata and associated facilities for the source identification of obsidian artefacts. In: Barnard N (ed) Ancient Chinese bronzes and South East Asian metal and other archaeological artifacts. National Gallery of Victoria, Melbourne, pp 337–350

    Google Scholar 

  • Ward G (1979) Prehistoric settlement and economy in a tropical small island environment: the Banks Islands, Insular Melanesia. Australian National University, Canberra

    Google Scholar 

  • Weisler MI (1998) Hard evidence for prehistoric interaction in Polynesia. Curr Anthropol 39:521–532

    Article  Google Scholar 

  • White JP, Jacobsen H, Kewibu V, Doelman T (2006) Obsidian traffic in the Southeast Papuan Islands. J Island Coastal Archaeol 1:101–108

    Article  Google Scholar 

  • Wilson L, Pollard A (2001) The provenance hypothesis. In: Brothwell D, Pollard A (eds) Handbook of archaeological sciences. Wiley, Chichester, pp 507–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reepmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reepmeyer, C., Ambrose, W., Clark, G. (2016). Contributions of LA-ICP-MS to Obsidian Sourcing in the Pacific. In: Dussubieux, L., Golitko, M., Gratuze, B. (eds) Recent Advances in Laser Ablation ICP-MS for Archaeology. Natural Science in Archaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49894-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49894-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49892-7

  • Online ISBN: 978-3-662-49894-1

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics