We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Entanglement and Locality Restrictions

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5838 Accesses

Abstract

Quantum mechanics violates daily intuition not only because the measured outcome can only be predicted probabilistically but also because of a quantum-specific correlation called entanglement. It is believed that this type of correlation does not exist in macroscopic objects. Entanglement can be used to produce nonlocal phenomena. States possessing such correlations are called entangled states (or states that possess entanglement). A state on a bipartite system is called called a maximally entangled state or an EPR state when it has the highest degree of entanglement among these states. Historically, the idea of a nonlocal effect due to entanglement was pointed out by Einstein, Podolsky, and Rosen; hence, the name EPR state. In order to transport a quantum state over a long distance, we have to retain its coherence during its transmission. However, it is often very difficult because the transmitted system can be easily correlated with the environment system. If the sender and receiver share an entangled state, the sender can transport his/her quantum state to the receiver without transmitting it, as explained in Chap. 9. This protocol is called quantum teleportation and clearly explains the effect of entanglement in quantum systems. Many other effects of entanglement have also been examined, some of which are given in Chap. 9. However, it is difficult to take advantage of entanglement if the shared state is insufficiently entangled. Therefore, we investigate how much of a maximally entangled state can be extracted from a state with a partially entangled state. Of course, if we allow quantum operations between two systems, we can always produce maximally entangled states. Therefore, we examine cases where locality conditions are imposed to our possible operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When the measurement is employed in the class \(\emptyset \), it is required that Alice and Bob obtain the same outcome.

  2. 2.

    A large part of the discussion relating to entanglement fidelity and information quantities relating to entanglement (to be discussed in later sections) was first done by Schumacher [5].

  3. 3.

    Since the form of this inequality is similar to the Fano inequality, it is called quantum Fano inequality. However, it cannot be regarded as a quantum extension of the Fano inequality (2.35). The relationship between the two formulas is still unclear.

  4. 4.

    If the operation \(\kappa _n\) in C has a larger output system than \(\mathbb {C}^{d_n} \otimes \mathbb {C}^{d_n}\), there exists an operation \(\kappa _n'\) in C with the output system \(\mathbb {C}^{d_n} \otimes \mathbb {C}^{d_n}\) such that \(\Vert ~|\Phi _{d_n} \rangle \langle \Phi _{d_n}|- \kappa _n (\rho ^{\otimes n})\Vert _1 \ge \Vert ~|\Phi _{d_n} \rangle \langle \Phi _{d_n}|- \kappa _n' (\rho ^{\otimes n})\Vert _1\).

  5. 5.

    The subscript c denotes “common randomness.”

  6. 6.

    If we employ the original definition, the inequality (8.232) cannot shown by the concavity of \(\log \).

References

  1. V. Vedral, M.B. Plenio, Entanglement measures and purification procedures. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  2. H.-K. Lo, S. Popescu, Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001)

    Article  ADS  Google Scholar 

  3. A. Uhlmann, The ‘transition probability’ in the state space of *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. B. Schumacher, Sending quantum entanglement through noisy channels. Phys. Rev. A 54, 2614–2628 (1996)

    Article  ADS  Google Scholar 

  6. H. Barnum, E. Knill, M.A. Nielsen, On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory 46, 1317–1329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Hamada, Lower bounds on the quantum capacity and highest error exponent of general memoryless channels. IEEE Trans. Inf. Theory 48, 2547–2557 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Adami, N.J. Cerf, On the von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470 (1997)

    Article  ADS  Google Scholar 

  9. B. Schumacher, M.A. Nielsen, Quantum data processing and error correction. Phys. Rev. A 54, 2629 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Barnum, M.A. Nielsen, B. Schumacher, Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1997)

    Article  ADS  Google Scholar 

  11. A.S. Holevo, On entanglement-assisted classical capacity. J. Math. Phys. 43, 4326–4333 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R. Bhatia, Matrix Analysis (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  13. M.A. Nielsen, J. Kempe, Separable states are more disordered globally than locally. Phys. Rev. Lett. 86, 5184–5187 (2001)

    Article  ADS  Google Scholar 

  14. N.J. Cerf, C. Adami, Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.A. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  16. G. Vidal, Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046–1049 (1999)

    Article  ADS  Google Scholar 

  17. G. Vidal, D. Jonathan, M.A. Nielsen, Approximate transformations and robust manipulation of bipartite pure state entanglement. Phys. Rev. A 62, 012304 (2000)

    Article  ADS  Google Scholar 

  18. T. Yamamoto, M. Koashi, Ş. Özdemir, N. Imoto, Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)

    Article  ADS  Google Scholar 

  19. J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  20. X. Wang, H. Fan, Non-post-selection entanglement concentration by ordinary linear optical devices. Phys. Rev. A 68, 060302(R) (2003)

    Article  Google Scholar 

  21. M. Hayashi, General formulas for fixed-length quantum entanglement concentration. IEEE Trans. Inf. Theory 52, 1904–1921 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  23. M. Hayashi, K. Matsumoto, Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding. quant-ph/0109028 (2001); K. Matsumoto, M. Hayashi, Universal entanglement concentration. Phys. Rev. A 75, 062338 (2007)

    Google Scholar 

  24. M. Horodecki, P. Horodecki, R. Horodecki, General teleportation channel, singlet fraction and quasi-distillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Hayashi, M. Koashi, K. Matsumoto, F. Morikoshi A. Winter, Error exponents for entangle concentration. J. Phys. A Math. Gen. 36, 527–553 (2003)

    Google Scholar 

  26. F. Morikoshi, M. Koashi, Deterministic entanglement concentration. Phys. Rev. A 64, 022316 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Morikoshi, Recovery of entanglement lost in entanglement manipulation. Phys. Rev. Lett. 84, 3189 (2000)

    Article  ADS  Google Scholar 

  28. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. P.M. Hayden, M. Horodecki, B.M. Terhal, The asymptotic entanglement cost of preparing a quantum state. J. Phys. A Math. Gen. 34, 6891–6898 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B.M. Terhal, P. Horodecki, A Schmidt number for density matrices. Phys. Rev. A 61, 040301(R) (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Vidal, W. Dür, J.I. Cirac, Entanglement cost of antisymmetric states. quant-ph/0112131v1 (2001)

    Google Scholar 

  32. M. Donald, M. Horodecki, O. Rudolph, The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M.J. Donald, M. Horodecki, Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. Christandl, A. Winter, Squashed entanglement-an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M.A. Nielsen, Continuity bounds for entanglement. Phys. Rev. A 61, 064301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Matsumoto, T. Shimono, A. Winter, Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246(3), 427–442 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. K.G.H. Vollbrecht, R.F. Werner, Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  38. T. Hiroshima, M. Hayashi, Finding a maximally correlated state-simultaneous Schmidt decomposition of bipartite pure states. Phys. Rev. A 70, 030302(R) (2004)

    Article  ADS  Google Scholar 

  39. H.-K. Lo, S. Popescu, Classical communication cost of entanglement manipulation: is entanglement an interconvertible resource? Phys. Rev. Lett. 83, 1459 (1999)

    Article  ADS  Google Scholar 

  40. B.M. Terhal, M. Horodecki, D.W. Leung, D.P. DiVincenzo, The entanglement of purification. J. Math. Phys. 43, 4286 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. Koashi, A. Winter, Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Christandl, A. Winter, Uncertainty, monogamy, and locking of quantum correlations. IEEE Trans. Inf. Theory 51, 3159–3165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Winter, Secret, public and quantum correlation cost of triples of random variables, in Proceedings 2005 IEEE International Symposium on Information Theory (2005), p. 2270

    Google Scholar 

  45. E.M. Rains, A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47, 2921–2933 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.I. Cirac, W. Dür, B. Kraus, M. Lewenstein, Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86, 544 (2001)

    Article  ADS  Google Scholar 

  47. K. Audenaert, M.B. Plenio, J. Eisert, Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901 (2003)

    Article  ADS  Google Scholar 

  48. S. Ishizaka, Binegativity and geometry of entangled states in two states. Phys. Rev. A 69, 020301(R) (2004)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and quantum communication, in Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer Tracts in Modern Physics, 173), G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rotteler, H. Weinfurter, R. Werner, A. Zeilinger (eds.), (Springer, Berlin Heidelberg New York, 2001)

    Google Scholar 

  50. M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  ADS  Google Scholar 

  52. T. Hiroshima, Majorization criterion for distillability of a bipartite quantum state. Phys. Rev. Lett. 91, 057902 (2003)

    Article  ADS  Google Scholar 

  53. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. W. Dür, J.I. Cirac, M. Lewenstein, D. Bruß, Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  55. N.J. Cerf, C. Adami, R.M. Gingrich, Reduction criterion for separability. Phys. Rev. A 60, 898 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  56. D. Yang, M. Horodecki, R. Horodecki, B. Synak-Radtke, Irreversibility for all bound entangled state. Phys. Rev. Lett. 95, 190501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  57. L. Masanes, All entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. S. Ishizaka, T. Hiroshima, Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)

    Article  ADS  Google Scholar 

  59. S. Lloyd, The capacity of the noisy quantum channel. Phys. Rev. A 56, 1613 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Fukuda, Revisiting additivity violation of quantum channels. Commun. Math. Phys. 332, 713–728 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. M.B. Hastings, Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)

    Article  Google Scholar 

  62. M. Hayashi, Security analysis of \(\varepsilon \)-almost dual universal\(_2\) hash functions: smoothing of min entropy vs. smoothing of Rényi entropy of order 2 (2013). IEEE Trans. Inf. Theory 62, 3451–3476 (2016)

    Google Scholar 

  63. L. Carter, M. Wegman, Universal classes of hash functions. J. Comput. Sys. Sci. 18, 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Krawczyk, LFSR-based hashing and authentication, in Advances in Cryptology — CRYPTO ’94, Lecture Notes in Computer Science, vol. 839 (Springer-Verlag, 1994), pp. 129–139

    Google Scholar 

  65. M. Hayashi, Precise evaluation of leaked information with secure randomness extraction in the presence of quantum attacker. Commun. Math. Phys. 333(1), 335–350 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography part 1: Secret sharing. IEEE Trans. Inform. Theory 39, 1121–1132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  67. I. Devetak, A. Winter, Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. R. Renner, Security of quantum key distribution, PhD thesis, Dipl. Phys. ETH, Switzerland, 2005; arXiv:quantph/0512258; Int. J. Quant. Inf. 6, 1–127 (2008)

  69. M. Hayashi, Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory 57, 3989–4001 (2011)

    Article  MathSciNet  Google Scholar 

  70. J.M. Renes, Duality of privacy amplification against quantum adversaries and data compression with quantum side information. Proc. Roy. Soc. A 467(2130), 1604–1623 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  72. F. Verstraete, J. Dehaene, B. DeMorr, Local filtering operations on two qubits. Phys. Rev. A 64, 010101(R) (2001)

    Article  ADS  Google Scholar 

  73. N. Linden, S. Massar, S. Popescu, Purifying noisy entanglement requires collective measurements. Phys. Rev. Lett. 81, 3279 (1998)

    Article  ADS  Google Scholar 

  74. A. Kent, N. Linden, S. Massar, Optimal entanglement enhancement for mixed states. Phys. Rev. Lett. 83, 2656 (1999)

    Article  ADS  Google Scholar 

  75. E.M. Rains, Bound on distillable entanglement. Phys. Rev. A 60, 179–184 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  76. K. Audenaert, J. Eisert, E. Jané, M.B. Plenio, S. Virmani, B. De Moor, The asymptotic relative entropy of entanglement. Phys. Rev. Lett. 87, 217902 (2001)

    Article  ADS  Google Scholar 

  77. F. Yura, Entanglement cost of three-level antisymmetric states. J. Phys. A Math. Gen. 36, L237–L242 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. K. Matsumoto, F. Yura, Entanglement cost of antisymmetric states and additivity of capacity of some quantum channel. J. Phys. A: Math. Gen. 37, L167–L171 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. C. King, The capacity of the quantum depolarizing channel. IEEE Trans. Inf. Theory 49, 221–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  80. B.M. Terhal, K.G.H. Vollbrecht, Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  81. M. Horodecki, P. Horodecki, R. Horodecki, Unified approach to quantum capacities: towards quantum noisy coding theorem. Phys. Rev. Lett. 85, 433–436 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. I. Devetak, The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. P. Hayden, A. Winter, On the communication cost of entanglement transformations. Phys. Rev. A 67, 012326 (2003)

    Article  ADS  Google Scholar 

  84. A. Harrow, H.K. Lo, A tight lower bound on the classical communication cost of entanglement dilution. IEEE Trans. Inf. Theory 50, 319–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  85. A.D. Wyner, The common information of two dependent random variables. IEEE Trans. Inf. Theory 21, 163–179 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  86. M. Owari, K. Matsumoto, M. Murao, Entanglement convertibility for infinite dimensional pure bipartite states. Phys. Rev. A 70, 050301 (2004); quant-ph/0406141; Existence of incomparable pure bipartite states in infinite dimensional systems. quant-ph/0312091 (2003)

    Google Scholar 

  87. A. Miyake, Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Ishizaka, Bound entanglement provides convertibility of pure entangled states. Phys. Rev. Lett. 93, 190501 (2004)

    Article  ADS  Google Scholar 

  89. A. Datta, A condition for the nullity of quantum discord (2010). arXiv:1003.5256

  90. B. Dakic, V. Vedral, C. Brukner, Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  91. T. Shimono, Additivity of entanglement of formation of two three-level-antisymmetric states. Int. J. Quant. Inf. 1, 259–268 (2003)

    Article  MATH  Google Scholar 

  92. T. Shimono, H. Fan, Numerical test of the superadditivity of entanglement of formation for four-partite qubits, in Proceedings ERATO Conference on Quantum Information Science (EQIS) 2003, 119–120 (2003)

    Google Scholar 

  93. C.H. Bennett, G. Brassard, C. Crepeau, U.M. Maurer, Generalized privacy amplification. IEEE Trans. Inform. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  94. J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 1364 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  95. M. Hayashi, V.Y.F. Tan, Equivocations, exponents and second-order coding rates under various renyi information measures (2015). arXiv:1504.02536

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). Entanglement and Locality Restrictions. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics